Internet-enabled Social Transformation: Social Networks, Crowd-Sourcing and Opinion Formation

Boleslaw K. Szymanski Rensselaer Polytechnic Institute Troy, NY, USA

Future Internet Assembly, Poznan, Poland October 25, 2011

Outline

- 1. Three worlds intersect
- 2. Social network transformation issues:
 - i. Evolution of opinions, socio-informational networks, bazaar of ideas, viral innovation
 - ii. Synchronization limit for networked humans and their devices
 - iii. Trust how to replace human signals
 - iv. Humans as sensors working together via internet
- 3. People's Internet and its challenges
 - i. Technological limits: memory, processing, energy
 - ii. Societal limits: privacy, security, law and financing

Man versus Machine

Networks Everywhere: the Web

image by caida.org

Networks Everywhere: Mobile, Sensor, Social...

wireless sensor networks **Qiming Lu** et al., (2006)

High school friendship network [AddHealth]

Social Networks

Nodes: individuals

Links: social relationship (family, work, friendship)

Many <u>individuals</u> with <u>diverse</u> <u>social interactions</u> between them.

Big Question

How does existence of information networks (internet with its social networking tools, cell phone networks, and so on) change dynamics of human interaction?

Modeling social/opinion dynamics

A model for negotiation/opinion dynamics: the Naming Game

- 1. At each step a *speaker* and a *listener* (neighbor of speaker) are chosen randomly.
- 2. Speaker sends an opinion randomly selected from his list.
 - if the sent opinion presents in listener's list, both retain only this opinion;

else, listener adds the sent opinion to his list.

NG on Heterogeneous Spatial Networks

Using LandScan[™] US population data to construct a heterogeneous random geometric graphs

Future Internet Assembly, Poznan, Poland October 25, 2011 Thanks to Ahn and Barabási

What if we introduce committed agents that never change their opinions?

"Never doubt that a small group of thoughtful, committed, citizens can change the world. Indeed, it is the only thing that ever has." Margaret Mead How many are needed?

Initial condition we care about:

- Small fraction p < 0.5 of nodes randomly chosen are committed to opinion A Committed nodes are un-influencable i.e. never change opinion
- Remaining fraction (1-p) of nodes have opinion B

Tipping point in Social Networks

p: fraction of agents committed to opinion A

A non-absorbing (B-dominated, mixed) stable fixed point exists;

All trajectories starting from initial condition $n_A = 0, n_B = 1 - p$ flow to the non-absorbing fixed point

Only all-A consensus fixed point exists

All trajectories flow to consensus fixed point.

Asymptotic consensus times on the complete graph

Social influencing and associated *random-walk* models:

Tipping point in Social Networks

ER network (sparse random graph, N=200, $\langle k \rangle =5$) Qualitatively results do not depend on graph topology

p: fraction of agents committed to opinion A

Two-committed Minorities in the Mean-Field

Two-committed Minorities in Finite Size Networks

Switching Time with pA=pB

Below p_c , waiting time for switches between A-dominated and B-dominated states scales exponentially with N.

Future Internet Assembly, Poznan, Poland October 25, 2011

Features of social networks

 Homophily: The tendency of individuals to form social connections to others who are similar to them*.

 Link persistence: The tendency of social connections between similar individuals to last longer than those between dissimilar individuals**.

Co-existence of such structural dynamics along with social influence gives rise to a complex feedback process:

Future Internet Assembly, Poznan, Poland October 25, 2011

Network Model: social influence + rewiring

Model parameters:

 Each node has F attributes, each of which can take q values (opinions)

• Two nodes i and j are similar if they share similar opinions for at least ϕ attributes.

 \bullet Initial network is an Erdos-Renyi network with average degree $\,\langle k\rangle=6.\,$

Model dynamics:

A node i is selected randomly and one of its neighbors j is selected randomly.

If $Sim(i,j) >= \phi$

j copies the opinion of i, for an attribute on which they are currently dissimilar.

If $Sim(i,j) < \phi$

i disconnects its link to j, and connects to a randomly chosen node (excluding its current neighours).

Phase diagram of the model

Three phases are observed:

• **Region 1** : The largest component is of the order N when rewiring stops and the system reaches consensus on all attributes.

• **Region 2**: The largest component << N when rewiring stops. Consensus is reached independently in each component

• **Region 3**: The largest component ~ N but rewiring continues indefinitely and consensus is never reached.

In the following only phase 1, with F=5, q=2, ϕ =3 is presented

How does rewiring affect consensus times?

Q. Suppose we want a particular trait for a particular attribute to be adopted by all nodes, how can we accelerate consensus on this *designated* attribute?

Effect of committed individuals

- Committed individuals (nodes) hold a fixed opinion (1) for the designated attribute.
- All other nodes hold either 1 or 0 for the designated attribute with equal probability
- All nodes hold either 1 or 0 wih equal prob. for attributes beside the designated one.

Synchronization and Coordination in Networks

Understand fundamental and inherent instabilities in networks with delayed feedbacks and reactions

Olfati-Saber and Murray IEEE TAC (2004) -- deterministic consensus Hunt, Korniss, and Szymanski PRL (2010) and Phys. Rev. A (2011)-- stochastic coordination

The Impact of Time Delays in Info-Social Networks

- Individuals constantly react to endogenous and exogenous information: coordination/agreement/consensus/alignment in a social networks
- They react to the information or signal received from their neighbors possibly with some time lag τ (as result of finite transmission, decision, or cognitive delays)
- Applications: autonomous coordination of: unmanned aerial vehicles, microsatellite clusters, sensor and communication networks, flocking, social networks

Hunt et al., Phys. Let. A (2011)

Adjusting Coupling Strength for Synchronizibility: Empirical Evidence

Market traders favor weak ties and high communication in normal condition and strong ties and low communication in pre-crisis time (left part of the slide). This observation agrees with our finding that decreasing coupling restores synchronizibility with too high communication (right part of the slide)

Saavedra at al. Uzzi Synchronicity, Instant Messaging and Performance among Financial Traders, PNAS 2011

Trust in Network Interactions

- Net-Centric Systems may unwittingly bias human-information and human-human interaction. For example,
 - -Sequence bias: Causality may be wrongly inferred
 - -Trustworthiness of source unknown, assumed, or biased by "surface" features
 - -Anchoring effects
 - Information bias: Ease of gathering
 more information may delay decisionmaking
 - Facial appearance appears to exert a constant influence on judgments of trustworthiness
 - -These effects hold
 - Regardless of experience (i.e., positive or negative reciprocity)
 - Regardless of reputation (trustworthy or not)

Main Result:

 Regardless of experience or reputation, trustworthy faces are trusted more than untrustworthy ones

Current Hypothesis:

- Accessibility heuristic at work. Certain facial features prime cultural biases in the assessment of trustworthiness
- Positive priming from trustworthy faces provides a continual boost that cannot be overridden by memory-based factors.

J. Golbeck, UMD (2011)

Appearances may ameliorate the influence of experience (reciprocity) or reputation.

Appearance Bias

Looks count! Having a trustworthy looking face (CT) is always an advantage compared to having an untrustworthy face (CU)

Is a trustworthy face worth \$65 billion?

Con artists often have trustworthy appearances (e.g., Bernie Madoff). In social media we often have a picture of the person we interact with. Exactly how much does looking trustworthy counteract nontrustworthy behaviors?

What can be done to guard against this "appearance bias?"

J. Golbeck, UMD (2011)

Participatory Computing and Processing: Science

User of the day Hi! I'm a cruncher of the HFR team, the most powerful mini-team of I'Alliance Francophone. Contact us if

you like crunching and friendship.

Run at RPI, MilkyWay@home has became the largest BOINC computation (among 100's), about 2 Petaflops

Galaxy ZOO uses human minds to discover rare galaxies in the images taken by the Hubble Telescope

Future Internet Assembly, Poznan, Poland October 25, 2011

An early example of collective problem solving using the Internet and volunteers

Participatory Computing, Sensing and Processing

CarTel: a distributed, mobile sensing & computing system using phones and custom-built on-board telematics devices:

Vehicular cyber-physical system

PEIR, the Personal **Environmental Impact Report,**

An online tool allows using mobile phones to explore and share mutual impact of individuals and the environment.

Future Internet Assembly, Poznan, Poland October 25, 2011

Vision for the Future: People's Internet

Challenges

- 1. Technological Challenges:
 - Scale of supporting 7 billion active users will strain bandwidth, memory, processing power, energy needed to run data and processing centers
 - ii. Provenance and correctness of data
 - iii. Protection against illegal uses, including exploitation
- 2. Societal Challenges:
 - i. Privacy and security
 - ii. Ownership, preservation and removal of data
 - iii. Assurance of free and equitable access
 - iv. Finances: who and in what form will pay?

Thank You !!!

Questions

Future Internet Assembly, Poznan, Poland October 25, 2011

Gyorgy Korniss, RPI

Economic Impact of Information Delay

Posed in 1930's by Michal Kalecki at U. Chicago

David Hunt, RPI

Jierui Xie, RPI

Tahrir Square, February 11, 2011. © 2011 Human Rights Watch

Sameet Sreenivasan, RPI

Tipping Point of Committed Minority Influence Posed in Spring 2011 on streets of Cairo

Monitoring the Growth of Information Campaign Network Across America in Real Time

Trends : 911, Halloween, Obama, etc.,

Plot (in real time) the propagation of tweets corresponding to the trends geographically

Study of information campaign **speed**, **geographical coverage**, **penetration**, and **tipping point**.

Presented Data

Sentiments of Obama, 9/11, and Earthquake in Delhi

Obama : Sept. 7, - Oct. 11; 9/11 : Sept. 09, - Oct. 6; Earthquake: Sept. 07, to Sept. 08

Date ranges (all in 2011):

SCNARC

Future Internet Assembly, Poznan, Poland October 25, 2011