A Deposit for Digital Collections

Norman Noronha!, Jodo P. Campos', Daniel Gomes', M4rio J. Silva', and
José Borbinha?

! Faculdade de Ciéncias, Universidade de Lisboa, Portugal
{normann, jcampos, dcg, mjs}@di.fc.ul.pt
2 Biblioteca Nacional, Portugal
jose.borbinha@bn.pt

Abstract. We present the architecture and requirements for a novel
system for managing the deposit of specific genres of digital publications
in a deposit library. The system adopts a simple model for online pub-
lications and supports both harvesting and delivery models of deposit.
This paper describes that system, and presents an evaluation after a trial
period with the harvesting functions.

1 Introduction

Publications are changing from the traditional formats, like paper magazines, to
digital media, such as online news feeds. In addition, everyone with a connected
computer is now a potential publisher. This is increasing the number of new
publications, making the management of their deposit more complex.

The deposit and preservation of publications has a significant role in pre-
serving the historical past. Publications in traditional media have been archived
since ancient times. However, archiving the Internet aiming for long term preser-
vation is a non trivial task [3]. The tools used for building digital publications
have not been designed with preservation in mind and so do not meet most of
the preservation requirements. In addition, publishers on the Web do not have a
tradition of sending copies of their digital items to library deposits for archival.
However, the Internet makes it possible for librarians to harvest copies of pub-
lications on the Internet. There are efforts to archive the entire web [17]. These
are of marginal relevance to librarians, as most of the collected information has
no historical interest. Libraries need the tools to selectively choose the electronic
publications of great interest to collect and preserve [4]. Our research goal is to
evaluate how these publications could be collected for preservation.

The Networked European Deposit Library (NEDLIB) [5] is an intiative to
develop a common architecture and basic tools for building deposit systems
for electronic publications. Practical experiences, technical infrastructures and
organisational approaches taken by individual NEDLIB partners are gathered
and compiled in such a way that these experiences can be of use to other libraries
[6]. The National Library of Portugal is a one of the partners in NEDLIB.

We have developed an initial framework to select relevant publications from
the Internet, retrieve their contents over time and provide easy methods for ac-
cessing the collection to the general public. Access methods include a service to



Digital Deposit

Register )
Publication, Show Publication|
-
Ceposit ltem

Deliver ltem

Operator

Reader

Husegn

Editor FPublication

" Register URN
Resohve URN J

Fig. 1. Our framework for digital deposit and access to deposited copies of electronic
publications is composed of two subsystems, Digital Deposit (DD) and PURL.PT. An
operator registers publications with the DD system. Each of the items of a publication
is either harvested by or delivered to the system. Collected items are then verified by
an operator that either discards or accepts them in the deposit use case. A Universal
Resource Name (URN) [7] is then assigned to each deposited item. Any user that later
wants to access that item gives its URN to PURL.PT, which resolves it into an URL
that references the storage location of the collected publicaton

resolve Universal Resource Names (URNs) [10, 7] into the individual collection
items. This development is a part of DROP - Deposit of Online Digital Pub-
lications, a project for building a digital repository of all Portuguese Internet
publications of historical interest jointly developed by the National Library of
Portugal and the University of Lisbon. This paper presents the system we de-
signed for retrieving copies of publications from the web, storing and accessing
them from our repository.

Unlike Web Search engines, we do not intend to collect everything published
on the net, but only those sites that librarians classify as historically relevant.
The goal of DROP is to provide means for identifying, selecting and retrieving
bounded and well defined publications.

Figure 1 illustrates the use cases of the system. Our framework consists of
two subsystems:

Digital Deposit (DD) - registers publications, harvests, accepts the delivery,
verifies and deposits items.

PURL.PT - registers and resolves URNs [7,15] into URLs that represent the
address of the collected publication. This is similar to the temporary solution
taken by the PANDORA Project to resolve a permanent name [9, 8].



We support two methods for retrieving publication contents: delivery and
harvesting. In the delivery case, someone, either a system operator or a publica-
tion editor, submits the contents of a publication directly to the system. In the
harvesting case, a previously registered publication is copied from its home site
on the Internet into the DD (possibly periodically).

The deposit of received items in our system starts after the harvesting or
delivery of their elements. Before integrating these contents in the DD, an op-
erator inspects the collected items; inspection may involve viewing the data or
using some high level verification procedures. After evaluating the contents the
operator may decide that it is not valuable, and discard it, or that it should be
preserved, and accept it

Once an item is deposited, it may be accessed by the external readers of our
collection. When a reader wants to access some publication referenced by a URN
within the namespace controlled by the system, PURL.PT resolves the URN
either into a reference to a publication within the deposit, or into a reference to
the site on the Internet. If the reference points to the deposit, the reader will
engage in the show publication use case.

We have an initial implementation of the DD and PURL.PT systems. This
paper presents their design options, implementation approach and some of the
statistics for the collection of Portuguese periodic publications that have been
harvested with our system. It is organized as follows: section 2 explains the
requirements for the various functions of the system; section 3 presents the ar-
chitecture and documents the implementation options; section 4 presents some
of the statistics for the collection of the periodic publications that have been
harvested with our system. Finally, in section 5, we present our conclusions and
directions for future work.

2 Requirements

A deposit system for a digital collection must support multiple, sometimes con-
flicting requirements. We discuss the main requirements that we have identified
for the digital deposit.

Persistency of the Entry Points - The system has to provide persistence of
the entry points. As URNs [7] provide this kind of persistency, we assign
URNSs for resources following the National Library namespace draft proposal
[1]. Each item stored within the DD has an assigned URN.

We support this as a general service that translates URNs in our namespace
to their associated URLs on the Internet.

Publications Registry - Registering a publication needs to be a simple pro-
cess, where a human operator, after identifying a publication to include in
the collection creates a record indicating what URLs have to be collected
and the retrieval method to use: harvesting or delivery.

DROP is part of a larger system within the National Library of Portugal.
Publication records are not meant to overlap any existing data within bib-



liographic cataloging systems in use [11], but rather to specify meta data to
be used when retrieving and processing items to be collected.

The publication title and the algorithm to be used to generate URNs for each
of the items are attributes that must be specified in every record. If items
are added to the collection through harvesting, additional information is
necessary, such as where to start harvesting and the specification of the data
formats to be transferred. Periodic publications have more specific attributes,
including their periodicity and schedule for fetching new items.

DD operators also must be able to edit these records to make the necessary
updates as the properties stored for harvested publications change.

Harvesting - The publications included in our collection are documents or-
ganized as sets of URLs that are available on the Internet. Some of these
publications are published as Postscript or PDF files, some others as HTML
documents linked to GIF or JPEG images.

The main focus in harvesting these publications is respecting restrictions
imposed by the collection administrator on the contents to gather. Our har-
vester enables restrictions by domain name, depth of harvesting (number of
links to follow), MIME types of the documents to retrieve and maximum
size of the documents.

The harvester also can be programmed to collect every item of periodic
publications and to retrieve their contents once published, before they are
removed from the Web where they were originally published.

URN Assignments - The system generates an associated URN for every pub-
lication and item it manages. The URNs are generated by an algorithm that
is specific of each publication.

The URN generation algorithm in DROP follows the policies defined by the
National Library of Portugal [1].

Items of a periodic publication collected from the same space (same URL)
but at different points in time will result in separate items with different
URNSs. A general URN can be used as a reference point to the last collected
item of a periodic publication.

Publications Delivery - Delivery is another supported mode for importing

contents into the system. In this mode, publishers or other agents push
information into our repository. An operator, the publication editor or an
author, manually collects all its files/URLs and submits them to the sys-
tem. The delivery process associates the received data with the meta-data
available for the publication (from the publication record).
Delivery can be partially automated by distributing software to editors for
submitting new items. We have established initial contacts with some of the
most prominent publishers in our culture for joint development of processes
for automating the deposit of their digitally published materials. However,
we fear that editors will show small interest in installing delivery software,
as the only advantage they will get from doing it is the persistent depositing,
which is of low business value in the short term.

Deposit - In our system, data collected from publications web sites is not s-
tored permanently in the repository. Before deposit, data stored through



Show publication

Operator verifies and evaluates publica{ioﬁ

Doesn't meet DD standards!

Meets DO archiving
standards

Store within DD

Fig. 2. Activity diagram for the deposit operation: deposit starts by showing the pub-
lication contents to the operator for verification. If it meets the depositing standards,
it is then stored in the DD

harvesting or delivery is just candidate data. During deposit, this data can
be either discarded (because it does not meet the requirements to be part of
the collection), or stored permanently (figure 2).

Resolving a URN - The resolve operation is accomplished by the PURL.PT
subsystem. When a reader calls the resolve operation, he is redirected either
to our deposited copy of the item or to the original publishing site on the
Internet. The decision of where to redirect the reader is based on the following
criteria:

— permission to republish the resource

— location of the reader: local or remote
Redirection is supported directly by the HTTP protocol, and is used in our
system so that readers can have their browsers point to the item intended
when giving a URN to the PURL.PT server without intervention.
If the reader is redirected to a collected copy of the publication, it will ask
the DD for the item requested. The copy displayed should look as similar as
possible to the original. In particular, the reader should be able to browse
collected items in the same way as he does with the original.

Storage - Persistent storage of digital contents is a complex problem with mul-
tiple perspectives and many pitfalls [12]. Our current work is on the building
process of repositories for digital collections and providing easy access meth-
ods. Our assumption is that, in a production environment, our framework
will operate upon a storage system that provides information preservation
guarantees.

3 Architecture

DROP has been modeled as two main subsystems, to reflect the two different
main functions:



Digital Deposit is the system that registers, collects and shows publications;
PURL.PT is the system that registers and resolves URNs.

In this section, we present class and component models of our architecture.

3.1 Class Model

Publication

name
baseURN
collectionMode = (deliver|harvest)

T

Item URN
1 URN
¢ accessRules
0.1 1.*
0.1
1 entryPoint
belongs
Element
original URL
0.*  ImimeType *
contents
anchor

L

Fig. 3. Class diagram for the system. Publication objects represent publication records.
Items represent collected editions of publications. Items are made of elements: elements
are the objects that compose an item. Items are assigned URNs when deposited

The class model of our collection repository is represented in figure 3. A
publication describes online publications in the digital deposit. Each publication
has a name, a baseURN, specifying how to generate URNs for new items of the
publication and the collection mode used to import it into the system.

Item represents the saved copies of monographs or issues of periodic publi-
cations in the collection. Each publication may have multiple associated items.
The system assigns a URN to each item at deposit time. System operators may
assign additional URNs to the same item.

Each item is composed of one or more elements. An element represents the
contents of an URL downloaded from the Web or delivered to the system. Orig-
inal URLs of elements are saved to enable the reconstruction of relative URLSs
linked from them. MIME types will indicate to the final user what interpreter to
use when decoding the data. Links and anchors between documents are already
embedded in the contents and need not be saved as meta-data.

URNs reference resources. Each deposited item must be assigned a URN.
URNs may reference several copies of the same resource to direct the user to the
appropriate resource provider, according to some defined access rules.



Digital Deposit [—h

Operator
Operator Assistant

i
I
I
«interface»
Publication Configurations
77777777777777 > +getPublicationsToHarvest()

Verification

«interface» |

T Scheduler <P"""*~7 ! URN Resqlvr ‘
+getHarvestTask() Redirecter
+scheduleHarvestTask() URN Reg|ster, ;

} «call» +getPublicationsToReceive()
T
| !
} «call» Verifier
|
I
|
I
I
| I
I
I I
I
| I
I
I I !
| I
| |
1 2
} Collector Coordinator «interface»
| «call» Deposit
! | «call» +deposititem()
! ! /) +discarditem() —
I / +getitems
! ) | / g ZO> Purl.pt [—H
I «call»
I
I
I
I
I
I
! .
| +storeHarvestedContent() Execution Monitor -—-—-—-+ -
I
| _
| «interface»
I
Completion <P

*********** +getincompleteltems()

,,,,,,,,,,,,,,, «interface» 4

Receive
+receiveContent()|

Receiver

Periodic Deliver ~———-————————-—————————————————————

One Time Deliver

«interface»
Publication Store

i
I

I

|

I

|

I

! +createltem() <} 7777777 )

| +createElement() Repository ———-— | -
|

| +storeltem() v !
|

I

I

|

I

|

I

|

I

I

I

«interface»
«extegnds» Publication Exhibitor
+getElement()

I
I

--3 «interface» - }
[Temporary Publication Store| Temporary Repository |—-

+deleteltem()

Fig. 4. Component diagram representing DD and PURL.PT subsystems. For the sake
of simplicity only main operations are depicted. Component attributes are not repre-
sented

3.2 Component Model

Our system architecture has the following main components (Figure 4 represents
its component diagram):

Operator Assistant — saves publication records and provides an operator in-
terface to register publications.
Coordinator - interprets publication records and schedules harvesting tasks.



Collector — gets harvesting work units from the execution monitor and retrieves
the specified contents from the Web.

Auto Completer — is notified of possible incomplete items, and schedules a
task to retrieve contents to complete the items.

Receiver —receives items from users through one of the two interfaces provided
and inserts them in the system.

Verifier — provides a user interface to verify, evaluate and deposit or discard
publications.

Repository — saves deposited items. Offers an interface to save items and an
interface to retrieve them.

Temporary Repository —works like the repository but keeps temporary item-
s, already delivered or harvested, but not yet deposited. The interface allows
deletion of items.

Execution Monitor — orchestrates the concurrent execution of the other com-
ponents. Provides interfaces for scheduling harvesting tasks, retrieve incom-
plete items, save delivered items, and deposit accepted items. Saves contents
in the temporary repository and moves them to the repository (or deletes
them). Registers URNs for deposited items.

Redirecter — saves URN resolving data. Offers interfaces for registering and
resolving URNs.

The system components work together as follows:

— External operators register publications to collect with the Operator Assis-
tant. Periodically, the Coordinator retrieves publication records to harvest
from the Operator Assistant and schedules the tasks needed to gather them
with the Ezecution Monitor.

— When the Collector is free to gather more data, it asks the Ezecution Monitor
for work. It then gets the harvesting tasks, retrieves data from the Web and
requests the Ezecution Monitor to store it. The Collector is designed for
quick execution and does not try to recover from failures, it just logs them.

— The Auto Completer checks if all the retrieval tasks were successful. If not,
and if items can be completed by retrieving the remainder of the contents
from the Web, the Auto Completer re-schedules the appropriate tasks.

— The Receiver waits for a publisher to deposit contents through one of the
provided interfaces or if this is a delivery of an item of a periodic publication,
the receiver gets the publication meta-data from the Operator assistant. If a
publication is delivered for the first time, the publisher must insert the data
required to register the publication.

— The Verifier enables the evaluation of the items and provides an interface
for depositing or discarding them. It calls the necessary interfaces on the
FEzxecution Monitor to complete these tasks.

— The Exzecution Monitor controls the contents flow within the system. It re-
ceives the contents from the Collector or from the Receiver, stores them in
the Temporary Repository, guides the user to its evaluation and either moves
it to the Repository or deletes it.



— The Repository saves items and allows access to them through the publica-
tion exhibitor interface.

— The Redirecter keeps all the data needed to reference users to the resources
designated with the URNs presented for resolution. It collects this data when
it is entered through the register URN interface, and uses it to resolve calls
on the URN resolver interface.

The components are hosted in two separate subsystems so that one does not
depend on the other: one might want to keep the PURL.PT and discontinue DD
(if a better solution is offered on the market).

3.3 Implementation

In our implementation, we store items and elements in the file system of the
server that hosts the DD: an item is a directory and all the elements that compose
it are files within the directory. This structure may not reproduce the original file
structure on the publications web site, as one element may be part of multiple
items in the original site. However, it makes it easy to handle items as collections
of files that can be detached from our file system and later accessed from a Web
browser.

Additionally, publications harvested into the file system can be accessed from
a publication exhibitor interface.

All the meta-data needed by the execution of our system is maintained in a
PostgreSQL database[13].

The redirecter is implemented using the HT'TP redirection mechanisms, on
an Apache Web server[16] with the mod_rewrite and mod_redirect software.

4 Collection Statistics

We now present some statistical results from an initial crawl of a set of select-
ed publications identified by our librarians. The selected publications contents
varied in topic (general and specific) as well as in periodicity (daily, weekly,
monthly, annual) and distribution (national and regional).

We limited our collector to retrieve only documents residing on the base
server. The base server is the server that contains the entry point document for
the publication. We also restricted our scan to collect URLs within a maximum
depth of six from each entry point of a publication.

The collector made 60523 HTTP requests which retrieved successfully 72%
of all documents of the list of publications (see Table 1). About 19% of the doc-
uments not collected resided on servers which were rejected because we chose to
harvest only those documents available from the base server. We were surprised
to find that less than 5% of all our HT'TP requests were returned as non success-
ful HTTP codes. HTTP response and collector error codes generated during the
crawl of the Portuguese periodic publications collection are displayed in Table 1.
Results from generic crawlers usually indicate higher percentages of broken links.



Table 1. HTTP response and collector error codes generated during the crawl of the
Portuguese periodic publications collection

Code |Meaning Number |Percent
200 OK 43322 72%

-5 Invalid server 11468 19%
-11 Exception 2743 5%

404 Not Found 2381 4%

-10 Exceeded document retrieval interval ({103 0%

-2 Unnatural error 181 0%

-4 Exceeded size 129 0%

Another interesting statistic is that only one publication excluded our crawler
from harvesting it by the Robots Exclusion Protocol(REP)[14].

We also noticed that more than 83% of all documents varied in size in between
2KB and 32 KB (Figure 5).

Relation between document and size

12000
10000

8000
Number of 6000
Documents

4000

2000

O foof
64 512 4KB 32KB  256KB

Document Size

Fig. 5. Relation between documents retrieved and their size

Around 90% of all documents collected were either HTML documents, GIF
images or JPEG images (see Table 2). Even though our collector was unable
to determine the type of 9% of all documents, a more thorough study of their
file extensions imply that most of them are HTML documents, GIF images and
JPEG images.

This means that 99% of all documents retrieved are small and easy to in-
terpret. This shows a crawl restricted to those publications of historic interest
could easily retrieve almost all their contents and that it can be easily reviewed
with widely available tools.



Table 2. Distribution of MIME types

MIME type Number |Percent
text /html 34424 70%
image/gif 5448 11%
unknown 4478 9%
image/jpeg 4400 9%
text/plain 238 0%
application/zip 64 0%
application/msword 57 0%
application/pdf 45 0%
49256 100%

The fact that the web publications that we harvested are much more easily
handled (they only use the most widely adopted formats, have very few broken
links, etc) may suggest that publishers in general strive to make their publica-
tions as easily accessible as possible to maximize their readership. This in turn
makes our goal in harvesting for preservation easier to achieve. We believe that
this trend will increase as the Internet matures as a publishing media.

5 Conclusions and Future Work

We have developed an information system for the deposit of digital items. Our
approach separates the mechanisms for harvesting and accessing collected items
from the policies that estabilish how they are performed. Hence, operators need
to configure DROP and PURL.PT to behave as intended. However, policies
are hard to estabilish, as we still face several open issues, such as respecting
copyright policies and handling the merging and splitting of publications. Initial
usage of the first prototype shows that it can handle those Internet publications
of interest to our end-users.

We still face the problem of later being able to access harvested items. Many
publications today use languages and programs such as JavaScript, Java Applets
or ShockWayve Flash to provide dynamic contents; our collector does not analyze
these objects and may loose the harvesting of some of the URLs of a publication.
As a result, collected publications may not be properly harvested or may be hard
to interpret.

These difficulties are just the unraveling of a bigger issue: it is very difficult
to build a system made for preservation in a Web world with proprietary, in-
complete, undefined, unclear, non followed, complex standards. Future work in
this direction may provide the collector with a parser for interpreting scripts
and collect all the referred documents. Additional future work in the harvesting
process is also necessary, to automate ways of detecting faults and recovering
from them. The study of techniques to optimize harvesting is currently a major
work area [2].



References

1. Jose Borbinha. A URN namespace for resources maintained by the National Library
of Portugal — Internet Draft (submission in progress).

2. Junghoo Cho and Hector Garcia-Molina. The evolution of the web and implica-
tions for an incremental crawler. In Amr El Abbadi, Michael L. Brodie, Sharma
Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Young
Whang, editors, VLDB 2000, Proceedings of 26th International Conference on Very
Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages 200-209, 2000.

3. Working Group of the Conference of Directors of National Libraries. The legal
deposit of electronic publications. Available at http://www.unesco.org/webworld/
memory/legaldep.htm, December 1996.

4. Library of Congress Must Improve Handling Of Digital Information. LC21:
A Digital Strategy for the Library of Congress. Available at http://www4.
nationalacademies.org/news.nsf/isbn/030907144570penDocument Accessed on
June 2001.

5. Networked European Deposit Library Available at http://www.kb.nl/nedlib/.
Accessed on June 2001.

6. Long-term Preservation of Electronic Publications: The NEDLIB project Available
at http://www.dlib.org/dlib/september99/vanderverf/09vanderwerf.html.
Accessed on June 2001.

7. Naming and Addressing: URIs, URLs, ... Web Naming and Addressing Overview.
Available at http://wuw.w3.org/Addressing/. Accessed on June 2001.

8. Universal Resource identifiers in WWW  Available at http://www.w3.org/
Addressing/URL/uri-spec.html. Accessed on June 2001.

9. The PANDORA Project: a summary of progress PANDORA Archive - Key Doc-
uments Available at http://pandora.nla.gov.au/documents.html. Accessed on
June 2001.

10. R. Moats. RFC 2141: URN syntax, 1997.

11. National bibliographic database - Porbase. Available at http://portico.bl.
uk/gabriel/en/countries/portugal-union-en.html, Porbase available at http:
//porbase.bn.pt/.

12. Andrew Waugh, Ross Wilkinson, Brendan Hills, and Jon Dell'Oro. Preserving
digital information forever. In Proceedings of the Fifth ACM Conference on Digital
Libraries, June 2-7, 2000, San Antonio, TX, USA, pages 175-184. ACM, 2000.

13. PostgreSQL. PostgreSQL - a sophisticated Object-Relational DBMS. Available at
http://www.postgresql.org,

14. Martijn Koster. A Standard for Robot Exclusion. Available at http://
info.webcrawler.com/mak/projects/robots/norobots.html, The Robots pages
at WebCrawler available at http://info.webcrawler.com/mak/projects/robots/
robots.html.

15. OCLC PURL Service. Persistent URL at http://purl.oclc.org/

16. The Apache Software Foundation. Available at http://www.apache.org

17. Brewster Kahle Archiving the Internet Scientific American, March 1997.



