UNIVERSIDADE DE LISBOA
FACULDADE DE CIENCIAS
DEPARTAMENTO DE INFORMATICA

Web Modelling for Web Warehouse Design

Daniel Coelho Gomes

DOUTORAMENTO EM INFORMATICA
ESPECIALIDADE ENGENHARIA INFORMATICA

2006

http://www.ul.pt
http://www.fc.ul.pt
http://www.di.fc.ul.pt
mailto:dcg@di.fc.ul.pt

UNIVERSIDADE DE LISBOA
FACULDADE DE CIENCIAS
DEPARTAMENTO DE INFORMATICA

Web Modelling for Web Warehouse Design

Daniel Coelho Gomes

DOUTORAMENTO EM INFORMATICA
ESPECIALIDADE ENGENHARIA INFORMATICA

2006

Tese orientada pelo Prof. Doutor Mario Jorge Costa Gaspar da Silva

http://www.ul.pt
http://www.fc.ul.pt
http://www.di.fc.ul.pt
mailto:dcg@di.fc.ul.pt

Abstract

Users require applications to help them obtaining knowledge from the
web. However, the specific characteristics of web data make it diffi-
cult to create these applications. One possible solution to facilitate
this task is to extract information from the web, transform and load
it to a Web Warehouse, which provides uniform access methods for
automatic processing of the data. Web Warehousing is conceptually
similar to Data Warehousing approaches used to integrate relational
information from databases. However, the structure of the web is very
dynamic and cannot be controlled by the Warehouse designers. Web
models frequently do not reflect the current state of the web. Thus,
Web Warehouses must be redesigned at a late stage of development.
These changes have high costs and may jeopardize entire projects.
This thesis addresses the problem of modelling the web and its influ-
ence in the design of Web Warehouses. A model of a web portion was
derived and based on it, a Web Warehouse prototype was designed.
The prototype was validated in several real-usage scenarios. The ob-
tained results show that web modelling is a fundamental step of the

web data integration process.

Keywords: Web warehousing, crawling, web characterization.

Resumo

Os utilizadores da web recorrem a ferramentas que os ajudem a satis-
fazer as suas necessidades de informacao. Contudo, as caracteristicas
especificas dos contetidos provenientes da web dificultam o desenvolvi-
mento destas aplicacoes. Uma aproximacao possivel para a resolucao
deste problema ¢é a integracao de dados provenientes da web num
Armazém de Dados Web que, por sua vez, disponibilize métodos de
acesso uniformes e facilitem o processamento automatico. Um Arma-
zém de Dados Web é conceptualmente semelhante a um Armazém de
Dados de negocio. No entanto, a estrutura da informacao a carregar, a
web, nao pode ser controlada ou facilmente modelada pelos analistas.
Os modelos da web existentes nao sao tipicamente representativos do
seu estado presente. Como consequéncia, os Armazéns de Dados Web
sofrem frequentemente alteracoes profundas no seu desenho quando
j& se encontram numa fase avancada de desenvolvimento. Estas mu-
dancas tém custos elevados e podem por em causa a viabilidade de
todo um projecto. Esta tese estuda o problema da modelacao da web
e a sua influéncia no desenho de Armazéns de Dados Web. Para este
efeito, foi extraido um modelo de uma porgao da web, e com base
nele, desenhado um protétipo de um Armazém de Dados Web. Este
prototipo foi validado através da sua utilizacao em varios contextos
distintos. Os resultados obtidos mostram que a modelacao da web

deve ser considerada no processo de integracao de dados da web.

Palavras Chave: Armazenamento de Dados Web, Recolha de Dados
da Web, Caracterizacao da Web.

Resumo Alargado

A web ainda é vista principalmente como um meio de publicacao destinado a
ser interpretado por humanos. Esta perspectiva é muito limitativa face as suas
potencialidades. A criacao de aplicacoes que processem automaticamente dados
da web para extraccao de conhecimento é por outro lado possivel e torna-se por
isso necessaria. Estas aplicacoes podem ter finalidades distintas, como a criacao
de indices de paginas web, estudos da linguagem natural, criacao de arquivos
histéricos ou angariacao de estatisticas. No entanto, se construidas de raiz, todas

estas aplicagoes se irao debater com problemas comuns:

e A informagcao disponivel na web é vasta e encontra-se dispersa, o que difi-

culta a localizacao de dados relevantes;

e A heterogeneidade de formatos de publicagdo e o desrespeito pelas especi-

ficacoes constituem um entrave & interpretacao automatica;
e A volatilidade da informacao faz com que o seu acesso seja pouco fiavel.

A integracao de dados provenientes da web em Armazéns de Dados Web
(Web Warehouses), que disponibilizem métodos de acesso uniformes destinados
ao processamento automatico, facilita a criagao de novas ferramentas. O processo
de integracao de dados da web é conceptualmente semelhante ao de integracao de
dados relacionais. No entanto, a abordagem tradicional de integracao de dados
usada nos sistemas de Armazenamento de Dados (Data Warehousing) tem-se
revelado inadequada no contexto da web, uma vez que os pressupostos no desenho
deste tipo de sistemas nao sao aplicaveis. A arquitectura de um sistema de

Armazenamento de Dados de negocio pressupoe que:

e As caracteristicas das fontes de informacao sao bem conhecidas a partida;

e Se destina a apoiar sistemas de suporte a decisao que actuem sobre infor-

macao de pequena granularidade, tipicamente relacional;

e O processo de integracao é feito em fases independentes, sendo a fase de

recolha de informagao pouco complexa.

Em contraposi¢ao, o desenho da arquitectura de um Armazém de Dados Web

devera pressupor que:

e As fontes de informagcao nao sao bem conhecidas;
e Destina-se a suportar sistemas de recuperacao de informagao hipertextual;

e O processo de integragao impoe uma estrita cooperacao entre as diferentes
fases, sendo a recolha de informacao dificultada por problemas de acessibi-

lidade & informacao.

Os Armazéns de Dados Web sao carregados com dados de uma determinada
porcao da web. Varios estudos revelaram que cada porcao da web apresenta as
suas caracteristicas peculiares. Assim sendo, é importante delimitar estas porcoes
e modela-las de modo a que um Armazém de Dados Web possa ser desenhado
considerando as caracteristicas da informacao que ird processar. O processo de
integracao de dados da web compreende as fases de modelacao da fonte de in-
formacao, recolha, transformacao, armazenamento e acesso. Num Armazém de

Dados Web cada uma delas coloca novos desafios:

Modelagao. A web nao é uma fonte de informacao uniforme, pelo que sera
interessante integrar apenas uma parte da informacao que disponibiliza.
Impoe-se assim, a definicao de critérios de seleccao que permitam definir
porcoes de informacdo. Apos a definicao da fronteira de uma porcao da
web, esta devera ser modelada para permitir o dimensionamento do sistema
e definicdo de abordagens. No entanto, esta modelacao é normalmente
dificultada pela auséncia de estatisticas e caracterizacoes. Surge assim o
interesse em metodologias que permitam efectuar a modelagao de particoes

da web de forma sistemaética;

Recolha e transformacao. A traducao do critério de seleccao numa politica de
recolha afirma-se como o primeiro desafio desta fase. O processo de recolha

e transformacgao de dados devera ser eficiente e a0 mesmo tempo robusto.

A vastidao e diversidade da web impossibilitam a previsao e teste de todas

as situacoes que poderao vir a ser encontradas;

Armazenamento e acesso. O armazenamento de dados requer estruturas de
dados diferentes das usadas na fase de carregamento, de modo a propor-
cionar um modelo de acesso eficiente e uniforme. O grande volume de
informacao impoe que esta esteja acessivel a pessoas e maquinas, pelo que
os mecanismos de acesso deverao suportar processamento paralelo e gestao
escalavel da informacao. A dimensao temporal é importante porque permite

a analise historica de dados.

As abordagens tomadas para a solucao destes problemas tém sido feitas de
forma disjunta e dentro de contextos especificos, nao apresentando uma solucao
completa para o problema da integracao de informacgao proveniente da web.

Esta tese foca o problema da modelagao da web e a sua influéncia no desenho
de Armazéns de Dados Web. A metodologia adoptada foi principalmente expe-
rimental. Foi extraido um modelo de uma porcao da web e com base nele, foi
desenhado um prototipo de um Armazém de Dados Web, denominado Webhouse.
Cada um dos componentes deste sistema trata a resolucao dos problemas de uma
das etapas do processo.

A web portuguesa, definida como o conjunto de documentos de interesse cul-
tural e sociolégico para os portugueses, foi usada como caso de estudo. Esta
porcao da web foi recolhida e alvo de modelagao em 2003. A maioria dos sitios
da web portuguesa estavam alojados sob o dominio .P'T e o ntimero de sitios em
construcao era elevado. O uso de meta-dados adequados e descritivos era baixo.

O Webhouse é constituido por dois componentes principais: o repositorio Ver-
sus e o batedor Viava Negra (VN). O Versus gere os meta-dados e constitui o
nicleo do sistema. Este componente fornece estruturas de dados e mecanismos
para processamento paralelo, sincronizagao, gestao de faltas e suporte temporal.
O VN foi desenhado como um cliente do Versus que efectua a recolha e carrega-
mento em paralelo de dados provenientes da web.

Os componentes do Webhouse foram avaliados separadamente através de va-
rias experiéncias. Os resultados obtidos mostraram que o VN é robusto e escala-

vel. Por sua vez, o Gestor de Contetddos do Versus suplantou significativamente o

desempenho do NFS, mostrando que o algoritmo proposto para a eliminagao de
duplicados melhora o débito de armazenamento, ao mesmo tempo que poupa es-
paco em disco. O Webhouse, como sistema completo, foi avaliado através da sua
utilizacao em varios contextos distintos. A construcao deste protdtipo contribuiu
para a experimentagao cientifica e tecnolégica de novas hipéteses no campo da
recuperacao de informacao da web, permitindo efectuar simulacoes realistas em
ambiente controlado.

Os resultados obtidos mostraram que a modelacao deve ser considerada no
processo de integragao de dados da web. Este trabalho contribuiu para encontrar

respostas as seguintes questoes de investigacao:

e (Quais as caracteristicas que deverao ser consideradas num modelo da web?

A caracterizacao de sitios, contetudos e estrutura de ligacoes de uma porcao
da web é crucial para desenhar um Armazém de Dados Web que a processe.
Algumas caracteristicas derivadas de anélises da web global poderao nao
ser representativas de porcoes mais pequenas, como por exemplo, as webs
nacionais. Contudo, as webs nacionais podem ser de grande interesse para
grandes comunidades de utilizadores. Além disso, a caracterizacdo de uma
por¢ao da web relativamente pequena é acessivel em termos de recursos
necessarios e pode ser feita com grande precisao. Algumas caracteristicas
da web s6 podem ser modeladas a partir de diversas amostras recolhidas
ao longo do tempo, como por exemplo a persisténcia de dados da web.
Estas métricas devem ser incluidas num modelo da web porque permitem
inferir tendéncias de evolucao que tém uma forte influéncia no desenho de
Armazéns de Dados Web que guardem colec¢oes web construidas incremen-

talmente;

e Como podem ser definidas as fronteiras de uma porgao da web?

Uma porcao da web podera ser delimitada através de um conjunto de cri-
térios de seleccao. A porcao da web devera conter a informacao necessaria
para satisfazer as necessidades das aplicacoes que a irao processar. Os cri-
térios de seleccao deverao ser facilmente concretizaveis como politicas de

recolha automaética. O recurso a algoritmos de classificacao de contetidos

e a restricao das recolhas a sitios web alojados em determinados dominios

sao opcoes que se revelaram adequadas;

O que pode influenciar um modelo da web?

A metodologia usada para recolher amostras da web influencia os modelos
obtidos. A recolha automatica de dados da web é um método de amos-
tragem adequado ao contexto dos Armazéns de Dados Web, uma vez que
emula o processo de extraccao de dados normalmente usado nestes siste-
mas. Contudo, a configuracao e tecnologia usadas nos sistemas de recolha
de dados da web, e a existéncia de situagoes prejudiciais ao processamento
automaético de dados da web, poderao influenciar os modelos obtidos. Por
isso, a interpretacao de estatisticas obtidas de uma porcao da web requer
conhecimentos adicionais que extravasam uma analise matematica pura.
Sao também necessarios conhecimentos tecnologicos e sociais acerca da co-
munidade responsavel pela criacao dos conteidos que compoem a por¢ao

da web;

Qual é o grau de persisténcia da informagao disponivel na web?

Durante esta investigacao foram recolhidas amostras da web portuguesa
durante trés anos, a fim de modelar a persisténcia dos seus URL e conteti-
dos. Verificou-se que estas duas métricas podem ser modeladas através de
distribuicoes logaritmicas. A maioria dos URL tém tempos de vida curtos
e a taxa de mortalidade é mais elevada nos primeiros meses de vida. Existe
porém uma pequena percentagem de URL que persiste durante varios anos.
Estimou-se que passados dois meses, 50% dos URL de uma coleccao web
tenham morrido. As principais causas de morte detectadas foram a substi-
tuicao de URL e a desactivagao de sitios web. Os URL persistentes tendem
a ser estaticos, curtos e a receberem referéncias de paginas alojadas nou-
tros sitios web. Por sua vez, os sitios web apresentam tempos de vida mais
longos do que os URL. Estimou-se que levariam 556 dias até que a taxa de

mortalidade dos sitios web de uma coleccao atingisse os 50%.

Os modelos obtidos para a persisténcia de contetidos sugerem que passados

dois dias, 50% dos contetdos de uma coleccao web sofrem alteracoes. Com-

parando este resultado com outros obtidos em estudos anteriores, conclui-se
que o tempo de vida dos contetidos tende a diminuir. Verificou-se que cerca
de metade dos contetidos persistentes referenciam um contetido que perma-

nece inalterado durante a sua vida;

Qual a influéncia das caracteristicas da web no desenho de Armazéns de
Dados Web?

Os modelos da web sao ferramentas de suporte & decisao muito importantes
no desenho de Armazéns de Dados Web que permitem fazer suposicoes rea-
listas nas fases iniciais dos projectos. A duplicacao de contetdos é frequente
na web. No entanto, é dificil evitar a recolha de conteidos duplicados, uma
vez que, estes sao frequentemente referenciados por URL distintos e aparen-
temente nao relacionados. Uma coleccao de contetidos web que tenha sido
compilada incrementalmente apresenta um nimero adicional de duplicados
causados pelos conteidos que permanecem inalterados ao longo do tempo
e sao sucessivamente recolhidos e armazenados. Perante este cenario, a eli-
minacao de duplicados ao nivel de armazenamento é uma funcionalidade
apelativa em Armazéns de Dados Web. No entanto, os mecanismos adopta-
dos para suportar a eliminacao de duplicados deverao ter em consideracao
a precariedade dos URL, pois poderao por em causa a implementacao de

algoritmos baseados em andlises historicas.

Um modelo para a previsao do tempo de vida dos URL permite a escolha
de estruturas de dados e algoritmos adequados ao seu processamento num
Armazém de Dados Web. Por outro lado, estes Armazéns necessitam de
actualizar periodicamente a informacao que detém. Um modelo do tempo
de vida dos contetidos disponiveis na web permite medir a actualidade de
uma coleccao de dados da web armazenada e agendar operagoes para o seu
refrescamento. Os formatos de publicagao na web estao em permanente evo-
lucao, pelo que um Armazém de Dados Web devera preservar os contetidos
detidos de modo a que permanecam acessiveis apos terem deixado de estar
disponiveis na web. A extraccao de informacao é uma tarefa muito sensivel

porque o componente de software por ela responsavel interage directamente

com a web e tem de enfrentar situagoes imprevistas que podem ser pre-
judicais ao seu bom funcionamento. Os modelos da web contribuem para
o desenho de sistemas de recolha da web robustos a estas situacoes. Um
Armazém de Dados Web devera apresentar uma arquitectura distribuida
que permita tratar de grandes quantidades de dados extraidos da web. As
caracteristicas da web influenciam a definicao de estratégias de particiona-
mento adoptadas para efectuar o equilibrio de carga entre os processos que

compoem um Armazém de Dados Web.

O desenho de Armazéns de Dados Web eficientes é portanto uma tarefa com-
plexa que exige a combinacao de conhecimentos em varios dominios. As principais
contribuicoes enquadram-se principalmente em trés areas: a Caracterizacao da
Web, que visa a sua monitorizacao e modelacao; a Recolha de Dados Web, que
estuda a recolha automatica de dados da web; e o0 Armazenamento de Dados Web,
que estuda o processo de integracao de dados da web. As principais contribuicoes

em cada um destes campos foram as seguintes:
Caracterizagao da Web:

e Uma caracterizacao detalhada da estrutura da web portuguesa (Gomes
& Silva, 2005);

e Novos modelos que permitem estimar a persisténcia dos URL e con-
teudos na web (Gomes & Silva, 2006a);

e Descricao detalhada de situacoes na web prejudiciais ao processamento

automatico dos seus dados.
Recolha de Dados Web:

e Um nova arquitectura distribuida para sistemas de recolha de dados
da web, que se destaca pelas suas caracteristicas de escalabilidade e
robustez (Gomes & Silva, 2006b);

e Uma anélise de técnicas de particionamento dos URL pelos processos

que compoe um sistema de recolha de dados da web distribuido;

e Um estudo de técnicas que evitam a recolha de duplicados e URL

invalidos de modo a poupar largura de banda e espaco em disco;
Armazenamento de Dados Web:

e Uma nova arquitectura para Armazéns de Dados Web que compreende

todas as fases do processo de integracao deste tipo de dados;

e Uma analise do impacto das caracteristicas da web no desenho e de-

sempenho de Armazéns de Dados Web;

e Um algoritmo para a eliminacao de duplicados num sistema distribuido
(Gomes et al., 2006Db).

O Webhouse também se revelou como uma ferramenta de suporte 1til a outros

trabalhos de investigacao:

e Foi usado no estudo de: mecanismos de indexacao e ordenacao utilizados
em motores de busca na web (Costa, 2004); semelhanca entre documentos
(Martins, 2004); identificacao de lingua em paginas web (Martins & Silva,
2005a); andlise linguistica de colecgbes de documentos web (Martins & Silva,
2004b); detecgao e atribuicao de ambito geografico a recursos na web (Silva
et al., 2006) e na execucdo de avaliagbes de sistemas de recuperacio de

informacao multi-lingue (Cardoso et al., 2005b);

e E um dos principais componentes de um motor de busca (www.tumba.pt)
e de um prototipo de um sistema de arquivo para web portuguesa (tomba.
tumba.pt) (Gomes et al., 2006a; Silva, 2003);

e Foi usado na criacao do corpus de texto WPT03 para suporte a investigagao
na area de processamento da linguagem natural (disponivel em poloxldb.

linguateca.pt);

e Os componentes de software do Webhouse podem ser utilizados individu-
almente em diversos contextos que partilhem problemas com o Armazena-
mento de Dados Web. Por exemplo, o Gestor de Contetidos do Versus foi

utilizado como repositorio de artigos cientificos (Jul, 2005).

www.tumba.pt
tomba.tumba.pt
tomba.tumba.pt
poloxldb.linguateca.pt
poloxldb.linguateca.pt

A criacao de sistemas que permitam arquivar a informacao publicada na web
para fins histéricos, & semelhanca do que acontece com o deposito legal das pu-
blicacoes impressas, tem ganho uma importancia crescente. A investigacao apre-
sentada nesta tese tem uma grande potencialidade de aplicacao pratica nestes
sistemas. No entanto, o arquivo da web levanta novos problemas, designada-
mente de preservacao dos dados, que seriam alvos de estudo interessantes para

trabalhos futuros.

Acknowledgements

This is one giant leap for a man, one small step for mankind. A leap
that would not be possible if he took it alone. T would like to thank:

e My princess Catarina for her love and understanding. A great
part of this work is due to her, even though she basically hates
computers. My little Madalena, you inspired me and gave me

strength even before you were born;

e My advisor Mario J. Silva for his professionalism and unshake-
able enthusiasm. He always finds time for his students and gives
his best on helping them to improve. He is a role model for

professors;

e André L. Santos, Bruno Martins and Sérgio Freitas for their par-
ticipation in the design and development of the software used in
my research. Francisco Couto, Nuno Cardoso, Marcirio Chaves

and Paulo Sousa for their precious reviews;

e My friends Joao Campos, Miguel Costa and Norman Noronha

for the encouragement they gave me when it was most needed;

e My parents, Antonia and Vitalino Gomes for educating me and
giving me the chance of studying. My parents-in-law, Ju, Zé,
Teresa and Luiz for treating me as a son. My grandparents
Agostinho, Carminha, Daniel and Inacia for being examples that

the greatness of people is not in their wealth or scholarship;

e My present and past colleagues at XLDB/LaSIGE: Ana Maria
Afonso, Ana Paula Afonso, Andreas Wichert, Alysson, Feliciano
Grosso, Henrique Moniz, Joao Antunes, Marcirio Chaves, Leo-
nardo Andrade, Lili, Marquinho, Mocito, Nuno Maria and Rui

Lopes for their support and interesting (or not) discussions;

e FCCN-Fundagao para Computacio Cientifica Nacional (FCCN),
LaSIGE-Laboratorio de Sistemas Informéaticos de Grande Escala
and Fundagao para a Ciéncia e Tecnologia (scholarship grant
SFRH/BD/11062/2002), for their financial support and Mark-
test LDA. for the access to the Netpanel statistics.

In memory of Ricardo "Adolpho Dias" Ribeiro and Beto Ribeiro.

Contents

1 Introduction 1
1.1 Objectives and methodology 3
1.2 Contributions 5
1.3 Structure of the thesis 7

2 Background and Related Work
2.1 Web characterization

2.1.1 Terminology 10
2.1.2 Sampling methods and identification

of community webs 13

2.1.3 Structural analysis 15

2.1.3.1 Summary of web characterizations 16

2132 Links 18

2.1.3.3 Duplication, 18

2134 Size 19

2.1.3.5 Language 20

2.1.4 Information persistence 20

22 Crawling e 24

2.2.1 Crawler types and functioning 24

2.2.2 Requirements o 25

2.2.3 Architectural options 27

2.2.4 Web partitioning and assignment 28

2.2.5 Crawler examples 30

2.2.5.1 Design comparison 31

2.3 Web Warehousing projects 33

XiX

CONTENTS

2.3.1 Stanford WebBase
2.3.2 WebFountain
2.3.3 Alexa Web Search Platform
234 Whoweda
2.3.5 Searchengines. oo
2.3.6 Webarchives,
2.4 Conclusions

3 Characterizing the structural properties of a national web

3.1 Identifying the boundaries of a national web
3.1.1 Definition of the Portuguese Web
3.1.2 Finding contents outside the ccTLD

3.2 Experimental setup o
3.2.1 Crawler configuration

3.2.1.1 Spider trap biasing and mitigation
322 Dataset
3.3 A model of the Portuguese Web
3.3.1 Site characteristics L.
3.3.1.1 Sitenames
3.3.1.2 IPaddresses.
3.3.1.3 Domain distribution
3.3.14 Webservers
3.3.2 Content characteristics
3.3.21 URLlength
3.3.2.2 Last-Modified dates
3.3.2.3 Media type and size
3.3.24 Language
3.3.2.5 Metatagso oo
3.3.3 Webstructure Lo
3.3.3.1 Duplicationo
3.3.3.2 Link structure
3.3.3.3 Content popularity
3.3.3.4 Site popularity

XX

CONTENTS

3.4 Conclusions 72
4 Web data persistence 75
4.1 Experimental setup oL 76
4.2 URL persistenceo 7
4.2.1 Lifetimeof URLs 7
4211 URLdeath 78

4.2.1.2 Lifetime of sites 79

4.2.2 Characteristics of persistent URLs 80
4221 Dynamic URLs 80

4222 URLlength 81

4223 Depth oo 82

4224 Links o 82

4.3 Lifetime of contents L. 83
4.3.1 Characteristics of persistent contents 84
4.3.1.1 Dynamic contents 85

4.3.1.2 Last-Modified date 86

4.3.1.3 Content length 88

4314 Depth oo 89

4.3.1.5 Sitesizeo 89

4.4 Relation between URL and content persistence 91
4.5 Conclusions L 92
5 Designing a Web Warehouse 95
5.1 The Versus repository oo 96
5.1.1 Content Manager 97
5.1.1.1 Elimination of partial duplicates in a WWh . . . 97

5.1.1.2 Datamodel 99

5.1.1.3 An algorithm for eliminating duplicates 100

5.1.1.4 Fake duplicates 102

5.1.1.5 Content Manager architecture 103

5.1.1.6 Implementation 104

5.1.2 Catalog 105
5.1.2.1 Datamodel 105

xx1

CONTENTS

5.1.2.2 Operational model 106

5.1.2.3 Implementation 111

5.2 The VN crawler 112
5.2.1 Partitioning strategies 113
5.2.2 Crawler architecture 116
5.2.2.1 Crawling algorithm 118

5.2.2.2 Fault management 120

5.22.3 URL-seentest. 121

5.2.2.4 Optimizing bandwidth usage 123

5.2.2.5 Implementation 125

5.3 Coping with hazardous situations 126
53.1 Spidertraps 126
5.3.2 Hard to interpret contents 131
5.3.3 Duplicate hosts Lo 133

54 Conclusions Lo 137
6 Validation 139
6.1 Crawler evaluation 140
6.1.1 Experimental setup 140
6.1.2 Performance comparison 141
6.1.3 Bottlenecks oo 143
6.1.4 Robustness oo 147
6.1.5 Text extraction 148
6.1.6 Tuning thresholds 150

6.2 Versus content management 151
6.2.1 Experimental setup 151
6.2.2 Retrievingo 151
6.2.3 Deleting 152
6.2.4 Storing 153
6.2.5 Semantics of the store operation 155

6.3 Webhouse applications, 155
6.3.1 The tumbal! search engine 155
6.3.1.1 Supporting research experiments 158

XX11

CONTENTS

6.3.2 The Tomba web archive 160

6.3.2.1 Selection criteria for historical relevance 161

6.3.2.2 Architecture 165

6.3.2.3 Webinterface 168

6.4 Conclusions 171

7 Conclusions 173
7.1 Limitations 176
7.2 Future Work 178
References 183

XX1il

List of Figures

1.1
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4

Data vs. Web Warehousing.

Components of Webhouse.

Crawler architectures. 27
WebBase architecture. 33
Architecture of the Alexa Web Search Platform. 35
Contents per site. 53
Contents per IP address. 54
Sites per top-level domain. L. 56
Web server software. L 56
URL lengths. b7
Evolution of URL lengths. 58
Last-Modified dates. 59
Last-Modified dates in four months. 59
Content lengths. o 62
Evolution of average content size. 62
Languages.o 63
Outgoing links per page. 66
Incoming links per content. 68
Incoming links persite. 69
Lifetime of URLs. 77
Reasons for URL death. 78
Lifetime of sites. 80
Distribution of dynamic URLs. 81

XXV

LIST OF FIGURES

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
2.3
5.4
2.9
2.6
2.7
2.8
2.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Distribution of URL length (number of characters). 82
Distribution of URL depths. 83
Distribution of linked URLs. 84
Lifetime of contents. 0oL 85
Distribution of dynamically generated contents. 86
Contents with known Last-Modified dates. 87
Age given by Last-Modified and crawl dates. 87
Erroneous Last-Modified dates. 88
Distribution of content size. 89
Distribution of content depth. 90
Distribution of site size. 0L, 90
Persistent contents that maintained the same URL. 91
Persistent URLs that maintained the content. 92
Webhouse architecture. 0000000 96
Versus architecture. 96
Storage structure of a volume.o oo 99
Architecture of the Versus Content Manager. 104
Versus Content Manager data model. 105
Accessing information stored in Versus. 109
Loading data into Versus. 111
VN architecture. 117
Site crawl algorithm. Lo 118
Deep vs. home page seeding policies. 121
Apache directory list page and the linked URLs. 130
Scalability of VN’s download rate. 144
Downloads vs. Nr. of Crawling Processes per CNode. 144
Duration of the operations. 145
Evolution of a Portuguese-web crawl. 147
NF'S read vs. Versus Content Manager retrieve. 152
NF'S remove vs. Versus Content Manager delete. 153
NF'S save vs. Versus Content Manager regular store. 154
Storage throughput and duplication levels. 154

XXVvi

LIST OF FIGURES

6.9 Tumba! web interface. 157
6.10 Webhouse role in the tumba! search engine. 158
6.11 Distribution of contents per domain from the Portuguese Web. . . 163
6.12 Architecture of the Tomba web archive. 166
6.13 Tomba web interface. 168

XXvil

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

5.1

Web characterization studies. 16
Duplication comparison. 18
Size compariSon. e e e 19
Language comparison.o 20
Content persistence on the web. 21
URL persistence on the web. 21
URL persistence on digital libraries. 22
Crawler design options. 31
Alternative definitions of the Portuguese Web. 48
Status codes of the visited URLs. 51
Sites hosted per IP address. 55
MIME types collected. 60
Content size and extracted text. 61
Distribution of contents with duplicates. 65
The 10 contents with highest number of outgoing links. 66
The 10 URLs with highest number of incoming links. 67
The 10 sites that received most incoming links. 69
The 40 most accessed sites by Portuguese users. 70
Statistics of the crawls in the dataset. 76
Unknown dates in the Last-Modified header field. 86
Comparison of URL persistence. 93
Comparison of content persistence. 93
Comparison of the partitioning strategies. 113

XXIX

LIST OF TABLES

5.2
3.3

6.1
6.2
6.3
6.4
6.5
6.6

Five approaches to detect duphosts. 135
Normalization of the usage of the WWW prefix. 136
Hardware used to support crawling experiments. 140
Performance comparison between crawlers. 142
Disk I/O analysis of the Volume. 146
Analysis of text extraction efficiency. 148
Percentage of sites and URLs that exceeded limit values. 150
Prevalence of media types on the Portuguese Web. 164

XXX

Chapter 1

Introduction

The web is the largest source of information ever built. It provides a quick,
cheap and simple publishing media. However, its full potential is far from be-
ing completely explored. Users require applications for aiding them in finding,
summarizing and extracting useful knowledge from web data. However, the web
was designed to provide information to be interpreted by humans and not au-
tomatically processed by software applications. The size and transience of web
data make it difficult to design efficient systems able to harness its complexity in
useful time and the heterogeneity and disrespect of standards make it difficult to
automatically interpret the data. Thus, the automatic processing of web data is
a challenging task.

One possible solution to address the above challenges is adopting a Data Ware-
housing approach. The idea is to extract information from the web, transform and
load it to a system, called a Web Warehouse (WWh), which provides uniform ac-
cess methods to facilitate the automatic processing of the data. Besides overcom-
ing accessibility problems, Web Warehousing extends the lifetime of web contents
and its reuse by different applications across time. Web warehousing has been
widely used to support numerous applications. The integration of web data for off-
line automatic processing by web mining applications is a requirement of a wide
range of systems. Web companies, such as Google (www.google.com) or Amazon
A9 (www.a9.com), rely on Web Warehouses to support their businesses. The In-
ternet Archive harvests and preserves web data for historical purposes, following

a Web Warehousing approach (www.archive.org). Marketeers analyze web data

www.google.com
www.a9.com
www.archive.org

1. INTRODUCTION

OLTP Extract
Transform
Load

OLTP
relational

Data -
Warehouse Data Mining
applications

Web
Warehouse

OLTP

Extract
Transform
Load

hypertextual

Web Mining
applications

Figure 1.1: Data vs. Web Warehousing.

G UNEEE

to determine commercial strategies (www.webanalyticsassociation.org). So,
Web Warehousing is a research area that has received a growing interest in the
last years.

Web Warehousing is conceptually similar to Data Warehousing. Figure 1.1
presents the data integration process in both. Data Warehouses integrate data
gathered from tables in relational databases. The data is migrated from its source
models into an uniform data model. Then, Data Mining applications generate
statistical reports that summarize the knowledge contained in the data. Web
Warehouses integrate hypertextual documents gathered from sites on the web.
Web Warehouses also store information according to an uniform model that en-
ables its automatic processing by Web Mining applications.

The characteristics of data influence the design of an information system,
so the first step in the design of a Warehouse is to analyze the data sources.
Data Warehousing assumes the existence of a well-defined model of the data
sources. They are usually On-Line Transaction Processing (OLTP) databases
that respect relational data models. On the other hand, the source of information
that feeds Web Warehouses is the web and not relational databases. Unlike

www.webanalyticsassociation.org

1.1 Objectives and methodology

relational databases, the structure of the web cannot be controlled by the people
that design the WWh and does not follow a static structured data model. Models
and characterizations of the web are scarce and frequently outdated, not reflecting
its current state, making it difficult to make realistic assumptions in the design
of a Web Warehouse. Frequently, Web Warehouses must be redesigned at a late
stage of development because problems are detected only when the WWh leaves
the experimental setup and begins to integrate information gathered from the
real web. These changes have high costs and may jeopardize entire projects.

Models of the web can be used to aid in the design of efficient Web Warehouses.
Besides, they are useful to tune other applications that process web data, such
as proxies or crawlers. However, modelling the web is not straightforward. The
web is enormous and permanently changing. So, the available models of the web
may not be representative of the web portion used as data source of the WWh.
Numerous characteristics of the web, such as the size of the contents or their
formats, can be analyzed but it is hard to identify which ones will affect the
design of the WWh. There are several methodologies used to gather samples of
the web and derive models from them, such as the analysis of query logs, web
crawls or web server traffic but the choice of the sampling methodology must
be done carefully to reflect the characteristics of the web portion that will feed
the WWh. Given the complexity and large size of the web, modelling it requires
adequate tools and a significant amount of resources, such as storage space or
bandwidth.

1.1 Objectives and methodology

This work addresses the problem of modelling the web and its influence on Web
Warehousing as the main objective. This thesis aims to answer the following

research questions:

e Which features should be considered in a model of the web?
e How can the boundaries of a portion of the web be defined?

e What can bias a web model?

1. INTRODUCTION

Extract

Transform
% Load

& Model %

Figure 1.2: Components of Webhouse.

e How persistent is information on the web?

e How do web characteristics affect the design of Web Warehouses?

I believe that the task of modelling the web must be part of the process of
web data integration, because accurate models are crucial in making important
design decisions at an early WWh development stage. Web models also enable
the tuning of a WWh to reflect the evolution of the web.

The methodology used in this research was mainly experimental. I derived a
model of a portion of the web and, based on it, I developed Webhouse, a WWh for
investigating the influence of web characteristics in Web Warehouses design. This
development was performed in collaboration with other members of my research
group.

Figure 1.2 presents an overview of the components of Webhouse. Each one
addresses one stage of the integration process: modelling, extraction, transfor-
mation and loading. Although the integration process is decomposed in several

steps, they are not independent from each other.

e Viuva Negra (VN): extracts information from the web by iteratively follow-
ing the linked URLs embedded in web pages. These systems are broadly

known as crawlers;

1.2 Contributions

e WebCat: transforms web documents into an uniform data model (Martins
& Silva, 2005b). This component was designed and developed by Bruno

Martins;
e Versus: loads and stores web data;

e Webstats: models the web, generating statistics on the documents and

correspondent meta-data stored in Versus.

The influence of web characteristics was studied during the design of each
one of them. The extraction most sensitive stage of the integration process,
because the software component interacts directly with the web and must address
unpredictable situations. This thesis focuses mainly on the aspects of extracting
information from the web and loading it into the WWh. The transformation of
web data is not thoroughly discussed in this work. The efficiency of Webhouse
as a complete system was validated through its application in several real usage
scenarios.

This research was validated by applying the Engineering Method (Zelkowitz
& Wallace, 1998). Several versions of Webhouse were iteratively developed and
tested until the design could not be significantly improved. The Portuguese Web
was chosen as a case study to analyze the impact of web characteristics in the
design of a WWh. Models of the web were extracted through the analysis of the
information integrated in the WWh. On its turn, a WWh requires models of the
web to be designed. The Engineering Method enabled the identification of the
web characteristics that influenced the performance of each version of the WWh
and gradually improve it. So, although this thesis presents a sequential structure,

the actual research was conducted as an iterative process.

1.2 Contributions

Designing Web Warehouses is complex and requires combining knowledge from
different domains. This thesis provides contributions in multiple aspects of web

data integration research:

Web Characterization: concerns the monitoring and modelling of the web;

1. INTRODUCTION

Web Crawling: investigates the automatic extraction of contents from the web;

Web Warehousing: studies the integration of web data.
My specific contributions in each field are:

Web Characterization:

e A thorough characterization of the structural properties of the Por-
tuguese Web (Gomes & Silva, 2005);

e New models for estimating URL and content persistence on the web.
Despite the ephemeral nature of the web, there is persistent informa-
tion and this thesis presents a characterization of it (Gomes & Silva,
2006a);

e A detailed description of hazardous situations on the web that make
it difficult to automate the processing of web data.
Web Crawling:
e A novel architecture for a scalable, robust and distributed crawler
(Gomes & Silva, 2006b);

e An analysis of techniques to partition the URL space among the pro-

cesses of a distributed crawler;
e A study of bandwidth and storage saving techniques, that avoid the
download of duplicates and invalid URLs.
Web Warehousing:

e A new architecture for a WWh that addresses all the stages of web
data integration, from its extraction from the web to its processing by

mining applications;

e An analysis of the impact of web characteristics in the design and

performance of a Web Warehouse;

e An algorithm that eliminates duplicates at storage level in a dis-
tributed system (Gomes et al., 2006b).

1.3 Structure of the thesis

Webhouse was developed to answer the research questions of this thesis. How-

ever, it has also been an useful tool that supported other research studies:

e Webhouse was used to study indexing and ranking strategies for searching
web documents (Costa, 2004), inter-document similarities (Martins, 2004),
identification of language in web pages (Martins & Silva, 2005a), linguistic
analysis of web corpora (Martins & Silva, 2004b), assignment of geographi-
cal scopes to web resources (Silva ef al., 2006) and to execute cross language
evaluations (Cardoso et al., 2005b);

e It is one of the main components of a search engine (www.tumba.pt) and
a web archive (tomba.tumba.pt) for the Portuguese Web (Gomes et al.,
2006a; Silva, 2003);

e It was used to create a text corpus (WPT03), for Natural Language Pro-
cessing research containing pages of the Portuguese Web, (available at

poloxldb.linguateca.pt);

e The software components of Webhouse can be reused in different contexts
that share problems with Web Warehousing. For instance, the Webhouse

storage manager was used as a repository for scientific texts (Jul, 2005).

1.3 Structure of the thesis

This thesis focuses mainly on modelling the web and its influence on the extrac-
tion and loading of web data to a WWh. This chapter introduced the problem
of modelling the web, described the adopted methodology and highlighted the
contributions of this research. The thesis has six additional chapters.

Chapter 2 presents related work on web characterization, crawling and Web
Warehousing projects. Chapters 3 and 4 present a model of the Portuguese Web,
analyzing its structural properties and persistence of information across time.
Chapter 5 describes the architecture of Webhouse and discusses the influence of
the derived model of the Portuguese Web on the design of the system. Chap-
ter 6 presents the Webhouse evaluation results. Finally, Chapter 7 draws the

conclusions of this thesis and suggests directions for future research.

www.tumba.pt
poloxldb.linguateca.pt

Chapter 2

Background and Related Work

The design of efficient Web Warehouses requires combining knowledge from Web
characterization and Crawling. Web Characterization concerns the analysis of
data samples to model characteristics of the web. Crawling studies the automatic
harvesting of web data. Crawlers are frequently used to gather samples of web
data in order to characterize it. Web warehouses are commonly populated with
crawled data. Research in crawling contributes to optimizing the extraction stage
of the web data integration process.

This chapter presents an overview of previous works related with Web char-
acterization, Crawling and Web Warehousing. Section 2.1 presents web charac-
terization concepts and studies. Section 2.2 presents an overview on the crawling
process and discusses the design of several crawlers. Section 2.3 presents ex-
amples of state-of-the-art Web Warehousing projects and discusses the followed

approaches. Finally, Section 2.4 draws the conclusions.

2.1 Web characterization

A characterization of the web is of great importance. It reflects technological
and sociological aspects and enables the study of the web evolution. An accurate
characterization of the web improves the design and performance of applications
that use it as a source of information (Cho & Garcia-Molina, 2000a). This section
introduces the terminology adopted to clarify web characterization concepts. It

discusses sampling methodologies and the identification of contents belonging to

2. BACKGROUND AND RELATED WORK

web communities. Finally, it presents previous works on the characterization of

the structural properties and information persistence on the web.

2.1.1 Terminology

As the web evolves, new concepts emerge and existing terms gain new meanings.
Studies in web characterization are meant to be used as historical documents that
enable the analysis of the evolution of the web. However, there is not a standard
terminology and the current meaning of the terms may become obscure in the
future.

Between 1997 and 1999, the World-Wide Web Consortium (W3C) promoted
the Web Characterization Activity with the purpose of defining and implementing
mechanisms to support web characterization initiatives (W3C, 1999a). The scope
of this activity was to characterize the web as a general distributed system, not
focusing on specific users or sites. In 1999, the W3C released a working draft
defining a web characterization terminology (W3C, 1999b). The definitions used

in this thesis were derived from that draft:
Content: file resulting from a successful HT'TP download;

Media type: identification of the format of a content through a Multipurpose
Internet Mail Extension (MIME) type (Freed & Borenstein, 1996a);

Meta-data: information that describes the content. Meta-data can be generated
during the download of a content (e.g. time spent to be downloaded), gath-
ered from HTTP header fields (e.g. date of last modification) or extracted
from a content (e.g. HTML meta-tags);

Page: content with the media type text/html (Connolly & Masinter, 2000);

Home page: content identified by an URL where the file path component is
empty or a '/’ only;

Link: hypertextual reference from one content to another;

Site: collection of contents referenced by URLs that share the same host name
(Fielding et al., 1999);

10

2.1 Web characterization

Invalid URL: an URL that references a content that cannot be downloaded;

Web server: a machine connected to the Internet that provides access to con-
tents through the HTTP protocol;

Duplicates: a set of contents that are bytewise equal;
Partial duplicates: a set of contents that replicate a part of a content;

Duplicate hosts (duphosts): sites with different names that simultaneously

serve the same content (Henzinger, 2003);

Subsite: cluster of contents within a site, maintained by a different publisher

than that of the parent site;

Virtual hosts: sites that have different names but are hosted on the same IP

address and web server;

Publisher or author: entity responsible for publishing information on the web.

Some of the definitions originally proposed in the draft are controversial and
had to be adapted to become more explicit. The W3C draft defined that a page
was a collection of information, consisting of one or more web resources, intended
to be rendered simultaneously, and identified by a single URL. According to this
definition, it is confusing to determine the contents that should be considered
as part of a page. For instance, consider an HTML content and its embedded
images. This information is meant to be rendered simultaneously but the images
are referenced by several URLs different from the URL of the HTML content.
Researchers commonly describe their experimental data sets providing the num-
ber of pages (Cho & Garcia-Molina, 2000a; Fetterly et al., 2003; Lavoie et al.,
1997). According to the W3C definition, a data set containing one million pages
should include embedded images. However, most researchers considered that a
page was a single HT'ML document.

A set of bytewise equal contents are duplicates. However, there are also similar
contents that replicate a part of another content (partial duplicates). Defining

a criterion that identifies contents as being similar enough to be considered the

11

2. BACKGROUND AND RELATED WORK

same is highly subjective. If multiple contents only differ on the value of a visit
counter that changes on every download, they could reasonably be considered the
same. However, when the difference between them is only as short as a number
on the date of a historical event, this small difference could be very significant.

The definition of site is one of the most controversial on web terminology. It is
commonly accepted that a site is a collection of inter-related contents but it is not
straightforward to define the boundaries of a site. O’Neill (1999) recommended
that web characterization studies should consider a site as the set of pages located
at the same IP address. However, web hosting services that support thousands
of different and completely independent pages under the same IP address should
not be considered a single site. The W3C draft considered that the contents of
a site shared the same host name but they must be accessible through a link
path from the site’s home page. This definition excludes contents that did not
receive a link from another page within the site, even if they are referenced by
links from other sites. Moreover, this definition requires the analysis of all the
links within a site to determine if a given content should be considered as part
of it. The definition of site adopted in this thesis enables the identification of
the pages that compose a site exclusively through the analysis of their URLs.
I believe that this is the most adequate definition because domain registrations
are cheap and publishers tend to group related information under different site
names to increase its visibility (Thurow, 2002).

Duplicate hosts are sites with different names that simultaneously serve the
same content. They were identified as the single largest source of duplicates on
the web (Henzinger et al., 2002). Duphosts are mainly caused by mirrors and
host aliases. Mirrors are sites that replicate the same contents across several
web servers to backup data, reduce the load on the original site or to be in
closer to the users (Bharat et al., 2000). Host aliases are alternative names
to the same site, such as www.acm.org and acm.org. However, some duphosts
present completely different names and frequently change their contents, making
it difficult to automatically identify them.

In traditional media, the author is the writer of a text, while the publisher
is the responsible for its distribution. On the web, the process of publishing is

cheaper and simpler than on traditional media, so the authors are usually also

12

www.acm.org
acm.org

2.1 Web characterization

the publishers. Hence, the terms author or publisher are used indistinguishably

in this thesis to refer to the people responsible for the creation of web contents.

2.1.2 Sampling methods and identification

of community webs

Web characterizations are derived from samples of the web. Ideally, each sample
would be instantly gathered to be a representative snapshot of the web. However,
contents cannot be accessed immediately, because of the latency times of the
Internet and web server responses. Hence, samples must be gathered within a
limited time interval named the timespan of the sample. Structural properties of
the web are derived from a snapshot of the web extracted within a short timespan
(Heydon & Najork, 1999). On the other hand, researchers also harvest samples
with a long timespan to study the evolution of the web (Fetterly et al., 2003).

There are two main sources of samples:

Traffic logs. The accesses to web contents through a given service are registered
on log files. Traffic logs can be obtained from web proxies (Bent et al., 2004;
Mogul, 1999b), web servers (Arlitt & Williamson, 1997; Davison, 1999; Tyen-
gar et al., 1999; Marshak & Levy, 2003; Rosenstein, 2000), search engines
(Beitzel et al., 2004; Silverstein et al., 1999), web clients (Cunha et al.,
1995; Gribble & Brewer, 1997) or gateways (Caceres et al., 1998; Douglis
et al., 1997). The samples gathered from traffic logs are representative of
the portion of the web accessed by the users of a given service and not of

the general information available on the web;

Crawls. Contents are automatically harvested by a crawler to be characterized
off-line. Search engines are responsible for the largest crawls of the web.
However, these crawls are biased because search engines are mostly inter-
ested in gathering popular pages to present them as search results to their
users (Cho et al., 1998). Henzinger et al. (2000) showed that the usage of
random walks combined with the visit ratio and the PageRank values of the
pages visited can be used to gather unbiased samples of the web. O’Neill

et al. (2003) sampled the web by getting a list of randomly generated IP

13

2. BACKGROUND AND RELATED WORK

addresses and then attempting to connect to the default HTTP port (80)
at each address to find and harvest sites. The main problem with this
approach is that virtual hosts are not analyzed (OCLC, 2001).

The web is designed to break all the geographical barriers and make infor-
mation universally available. However, a WWh cannot store all the information
from the web. So, it gathers data from selected and well-defined web portions.

As the web is the product of multiple user groups, it is possible to identify
portions within it containing the sites of interest to them. These are designated
as community webs and can be defined as the set of documents that refer to a
certain subject or are of interest to a community of users. The detection of a
community web is not always obvious, even if methods for identifying its bound-
aries are available. If one is interested in a small and static set of contents, then
enumerating all the URLs that compose the community web can be adequate.
However, it becomes very expensive to maintain the list of URLs if it grows or
changes frequently (Webb, 2000).

Communities are very cohesive in the sense that members of the community
are more tightly coupled to each other than to non-members (Flake et al., 2000).
Hence, the link structure of the web can be used to identify them. However, there
will be difficulties in identifying contents loosely interlinked, even if they refer to
the same subject. For instance, the sites of several concurrent companies in the
same business, will not likely link to each other. Web communities can be viewed
as containing a core of central authoritative pages that provide content linked
together by hub pages (Gibson et al., 1998). They exhibit a hierarchical topic
generalization that can be inferred directly from the link structure between the
contents.

National webs, broadly defined as the set of pages of cultural and sociologi-
cal interest to the people of a country, are community webs of great interest to
a large number of users. Baeza-Yates et al. (2007a) analyzed web characteriza-
tion studies for 24 national webs and compared the obtained results. There are
similarities and differences between national webs. The language and the dis-
tribution of domain registrations are the most varying characteristic across the

national domains studied.

14

2.1 Web characterization

To populate a national web archive, Albertsen (2003) harvested documents
from the web published on sites with the Norwegian c¢cTLD (.NO) or written in
the Norwegian or Sami languages. However, when a language is not exclusive
to a single country, it may not be a selective criterion by itself. For instance,
most of the pages written in the English language do not belong to the British
community web.

There are two main classes of top-level domains (TLD): generic (gTLDs) and
country code (ccTLDs). The gTLDs were meant to be used by particular classes
of organizations (e.g. COM for commercial organizations). The ccTLDs are
delegated to designated managers, who operate them according to local policies
adapted to best meet the economic, cultural, linguistic, and legal circumstances
of the country. Hence, sites with a domain name under a ccTLD are strong candi-
dates to be part of a national community web. However, this approach excludes
the numerous contents related to a country hosted outside the ccTLD (Zook,
2000). On the other hand, this rule also includes sites not related to the coun-
try, but being hosted under its ccTLD. For instance, multi-national companies
commonly register their name under many domains to protect their brands from
domain squatters that buy domain names desirable to specific businesses to make

profit on their resale.

2.1.3 Structural analysis

A structural analysis of the web consists on studying the characteristics of its
contents and the links among them. The web can be characterized according to
numerous metrics, such as page size, number of contents hosted per site or most
common content formats.

Baldi et al. (2003) proposed probabilistic methods and algorithms to be used
in web modelling. They analyzed previous experimental measurements and the-
oretical analysis of the web to map mathematical concepts with web phenomena.
In particular, they studied techniques for crawling, analyzing texts and links, and
modelling human behaviors while browsing and using search engines.

Next, I will present a summary of structural web characterization studies and

discuss the obtained results for some of the analyzed metrics.

15

2. BACKGROUND AND RELATED WORK

Author Methodology Sample Scope
size
Woodruff et al. (1996) Crawl 2.6M General
Smith (1997) Crawl - General
Broder et al. (1997) Crawl 30M General
Mogul (1999a) Proxy trace 29.4M | Accessed by clients
Lawrence & Giles (1999) Crawl 16M General
Baeza-Yates & Castillo (2000) Crawl 730 000 National: Chile
Najork & Heydon (2001) Crawl 77.4M General
Punpiti (2000) Crawl 769 000 | National: Thailand
Boldi et al. (2002a) Crawl 2M Continental: Africa
Kelly & Mogul (2002) Client trace 40M Accessed by clients
O’Neill et al. (2003) Crawl 3.08M General
Bent et al. (2004) Web server logs | 41M Enterprise sites
Nanavati et al. (2004) Crawl 1M General
Baeza-Yates et al. (2005) Crawl 16M National: Spain
Baeza-Yates et al. (2007b) Crawl ™ National: Chile

Table 2.1: Web characterization studies.

2.1.3.1 Summary of web characterizations

Measurements of web characteristics obtained using distinct methodologies may
not be comparable. Web characterizations may have different scopes. Some
researchers try to generate general models of the web, while others focus on
particular web communities to gather more representative models. Measurements
gathered from very small samples of the web are more prone to be biased by
sporadic phenomena, such as a mal-functioning web servers.

Table 2.1 presents the sampling methodology, the sample size and the scope
of several web characterization studies.

Woodruff et al. (1996) examined the characteristics of pages collected by the
Inktomi crawler from the world-wide web. They observed that 40% of the pages
contained at least one syntax error. Eight years later, Nanavati et al. (2004) con-
ducted a similar study and observed that most of the analyzed metrics presented
significantly distinct values.

Lawrence & Giles (1999) studied the accessibility of information on the web

and drew conclusions about the size, extracted text and usage of meta-data in

16

2.1 Web characterization

HTML pages. They observed that the major public search engines collectively
covered about 60% of the web and that the largest coverage of a single engine
was about one-third of the estimated total size of the web.

Najork & Heydon (2001) performed a large crawl of the web and gathered
statistics on the outcome of download attempts, replication and distribution of
content format and size. They witnessed that the distribution of pages over web
servers followed a Zipfian distribution.

Bent et al. (2004) studied the properties of a large number of commercial sites
hosted by a major ISP and performed a simulation analysis to estimate potential
performance benefits of content delivery networks (CDNs). The authors observed
that the web data presented peculiar characteristics that require mandatory cache
validations and prevent caching contents to increase performance. For instance,
the wide-spread indiscriminate usage of cookies and the prevalence of sites that
do not use the cache-control features of the HI'T'P 1.1 protocol prevents the use
of many content delivery optimizations.

Several authors studied the characteristics of web communities. Baeza-Yates
& Castillo (2000) presented the first study of the characteristics of a national web
in 2000. The authors studied the pages under the Chilean c¢TLD domain (.CL)
harvested for the Todo.CL search engine. Since then, subsequent studies provided
updated information about the characteristics of the Chilean web (Baeza-Yates &
Castillo, 2005; Baeza-Yates & Poblete, 2006; Baeza-Yates et al., 2003). The most
recent one studied a data set of 7 million pages and analyzed 36 metrics about
domains, sites and pages (Baeza-Yates et al., 2007b). Castillo (2004) compared
the characteristics of the Chilean web with the Greek web.

Baeza-Yates et al. (2005) studied the contents, links and technologies of Span-
ish pages, sites and domains in 2004. Some of the characteristics of this collection
resemble those of the web at large, while others are specific to the Spanish web.

Boldi et al. (2002a) studied the structural properties of the African web, an-
alyzing HTTP header fields and contents of pages and Punpiti (2000) presented

measurements and analysis of contents hosted under the .TH domain.

17

2. BACKGROUND AND RELATED WORK

Study Duplication
Broder et al. (1997) 18%
Najork & Heydon (2001) 8.5%
Mogul (1999a) 16.3%
Kelly & Mogul (2002) 5%
Castillo (2004) 6.12%

Table 2.2: Duplication comparison.

2.1.3.2 Links

One main difference between the texts published on the web and those published
in traditional media is the existence of hypertextual links among them. Consid-
ering that a page is a node and a link is an edge, the web structure can be seen
as a graph (Kumar et al., 2000). The links tend to follow a power-law indegree
distribution (Kleinberg, 1999). Thus, a small amount of pages receives most of
the links from other pages. However, 91% of the pages are reachable from one
another by following either forward or backward links (Broder et al., 2000). The
distribution of links between sites is related with to the TLD of the site (Bharat
et al., 2001). For instance, the sites with the same ccTLD are strongly connected.
The characteristics of the web graph are particularly interesting to determine the
popularity of pages. Based on the idea that the most cited publications are the
most relevant ones, the link structure of the web can be used to identify popular

pages and increase the relevance of search engine results (Page et al., 1999).

2.1.3.3 Duplication

Some contents are exact duplicates of others available at different URLs. The
existence of duplication on the web has been studied to syntactically cluster web
pages (Broder et al., 1997), identify near-replicas (Shivakumar & Garcia-Molina,
1999) and find sites with mirrored content (Bharat & Broder, 1999). In fact, a
few sites are responsible for most of the duplicates (Douglis et al., 1997; Mogul,
1999a). Table 2.2 presents a comparison of the duplication levels found in several
web characterization studies. The results show that duplication is prevalent on
the web.

18

2.1 Web characterization

Study Page Site size
size (KB) | (Nr. of pages)

Woodruff et al. (1996) 4.4 -

Smith (1997) 5 300
Broder et al. (1997) 5 -

Lawrence & Giles (1999) 18.7 289
Mogul (1999a) 9.5 -
Punpiti (2000) 0.8 90
Boldi et al. (2002a) 12.9 ;
Kelly & Mogul (2002) 17 -

O"Neill et al. (2003) 10-20 441
Bent et al. (2004) 9 -
Nanavati et al. (2004) 22 -
Castillo (2004) 16 67
Baeza-Yates et al. (2005) - 52

Table 2.3: Size comparison.

The detection of partial duplication has been studied to detected plagiarized
documents yielding good accuracy results (Brin et al., 1995; Finkel et al., 2002;
Shivakumar & Garcia-Molina, 1995). However, the presented methods are too

demanding to be applied to large collections of documents.

2.1.3.4 Size

The storage capacity of a WWh must be dimensioned according to the size of the
contents and sites that will feed it. However, the estimation of these parameters
may not be straightforward, because studies executed approximately at the same
time present contradictory results. For instance, Table 2.3 shows that Lawrence
& Giles (1999) observed an average page size of 18.7 KB, while Mogul (1999a)
obtained approximately half of that value. The main difference between the two
studies was that the first one used crawled samples, while the former used a web
proxy trace. On the other hand, Punpiti (2000) obtained an average page size
close to Mogul (1999a), although they used crawled samples.

19

2. BACKGROUND AND RELATED WORK

First Lang.

Second Lang.

Author Scope

Punpiti (2000) Thailand
Boldi et al. (2002a) Africa
O’Neill et al. (2003) World
Castillo (2004) Chile
Baeza-Yates et al. (2005) | Spain

English (66%)
English (74.6%)
English (72%)
Spanish (71%)
Spanish (52.4%)

Thai (<50%)

French (7.33%)
German (7%)

English (27%)
English (30.7%)

Table 2.4: Language comparison.

2.1.3.5 Language

Language can be a determinant criterion to define the portion of the web that
will feed a WWh. In the early days of the web, pages were almost exclusively
written in English. Later, people began publishing contents in their native lan-
guages at a fast pace (Funredes, 2001; Grefenstette & Nioche, 2000). Table 2.4
presents a comparison of the dominant languages on different portions of the web.
Nonetheless, from 1999 to 2002, English maintained a share of 72% of the pages
publicly available on the wide-web (O’Neill et al., 2003). Besides the historical
background of the web, there are two main reasons for the dominance of this lan-
guage. First, most sites originate from the United States (49% in 1999, 55% in
2002). Second, natural speakers of languages that are not widely known tend to

write contents in English to increase the visibility of their pages (Punpiti, 2000).

2.1.4 Information persistence

The

persistence of web data should be considered in the design and operation of

Most web data is ephemeral. However, there is persistent information.

WWh because it repeatedly collects and stores information from the web.

Capacity planning. A WWh is dimensioned based on the estimated amount
of data to process. A WWh designed to harness billions of contents has
different requirements than a smaller one. The identification and reuse of

persistent data may reduce the storage requirements;

20

2.1 Web characterization

Author Age Content
persistence
Brewington & Cybenko (2000) | 100 days 50%
Cho & Garcia-Molina (2000a) 1 day 7%
Fetterly et al. (2003) 7 days 65%
Ntoulas et al. (2004) 1 year 10%

Table 2.5: Content persistence on the web.

Author Age URL
persistence

Koehler (2002) 1.9 years 50%

Cho & Garcia-Molina (2000a) | 1 month 70%

Fetterly et al. (2003) 2.8 months 88%

Ntoulas et al. (2004) 1 year 20%

Table 2.6: URL persistence on the web.

Scheduling maintenance operations. A WWh periodically refreshes its data
and prunes stale information. These operations are costly and their schedul-

ing should be optimized considering the persistence of web data.

A WWh that daily harvests a portion of the web could increase its performance
by avoiding the redundant download of contents that have not changed since the
last harvest. This could be achieved through the estimation of the contents
frequency of change referenced by an URL based on its past changes (Cho &
Garcia-Molina, 2003). Unfortunately, historical data for most web resources is
not available. It is also difficult to gather enough historical data on the data
referenced by a given URL because the lifetime of URLs is short. There are new
URLs permanently being created while others disappear (Ntoulas et al., 2004;
Spinellis, 2003). The problem of URL persistence could be solved through the
usage of Universal Resource Names (URN), registered and maintained by the
holders of the Fully Qualified Domain Name registration (Daigle et al., 2002).
But so far, the existence of URNs is insignificant. National Libraries tried to
maintain URNs to selected publications, but the human intervention required
made URNs unbearable at web scale (Noronha et al., 2001).

21

2. BACKGROUND AND RELATED WORK

Author Age URL
persistence

Spinellis (2003) 1 year 80%

Markwell & Brooks (2003) | 4.7 years 50%

Lawrence et al. (2000) 1 year %

Table 2.7: URL persistence on digital libraries.

Tables 2.5 and 2.6 present the obtained results in previous works on the per-
sistence of contents and URLs cited from pages. An URL is considered persistent
if the referenced content was successfully downloaded in two samples, indepen-
dently from content changes. A content is considered persistent if it was success-
fully downloaded in two samples independently from the URLs that referenced
it. The age of an URL or a content is the time elapsed between the samples. For
instance, in Table 2.5, Brewington & Cybenko (2000) gathered two samples of
the web with an interval of 100 days and observed that 50% of the contents in
the first sample were still available on the second one.

Koehler (2002) examined the accessibility of a collection of 361 URLs ran-
domly selected from a crawl during 4 years and concluded that once a collection
has sufficiently aged, it tends to stabilize. The author witnessed the periodic res-
urrection of pages and sites, sometimes after protracted periods of time. A reason
for this situation is that site domains are resold and URLs resurrect referencing
completely different and unrelated contents.

Cho & Garcia-Molina (2000a) studied the frequency of change of pages by
harvesting a selection of 270 popular sites during 4 months on a daily basis,
summing a total of 720 000 pages. They proposed estimators for the frequency of
change of pages and counted how many days each URL was accessible to derive
its lifespan.

Fetterly et al. (2003) studied the evolution of pages by executing weekly crawls
of a set of 150 million URLs gathered from the Yahoo! home page (www.yahoo.
com). The study spanned 11 weeks in 2002. The authors focused on identifying
characteristics that may determine the frequency and degree of change of a page.
They found that most changes consisted of minor modifications, often of markup

tags.

22

www.yahoo.com
www.yahoo.com

2.1 Web characterization

Ntoulas et al. (2004) studied the evolution of contents and link structure of 150
top-ranked sites picked from the Google directory for one year. They witnessed
high levels of birth and death of URLs and concluded that the creation of new
pages is a much more frequent cause of change on the web than changes in existing
pages.

Brewington & Cybenko (2000) studied the change rate of pages by recording
the Last-Modified timestamp and the time of download of each page accessed by
the users of a clipping service. This analysis ignored those pages not relevant to
the users’ standing queries and the pages were observed over an average of 37 days.
The authors proposed a model to schedule web data refreshment operations.

The problem of URL persistence has been studied by the digital libraries
community, motivated by the increasing number of citations to URLs on scientific
publications (Lawrence et al., 2000). Table 2.7 presents the obtained results on
the persistence of URLs cited by articles in digital libraries. The methodology
used was to extract citations to URLs from archive documents over several years
and verify if they were still available. Changes to contents were not evaluated,
because the digital libraries did not keep copies of the cited documents.

Spinellis (2003) visited URLs extracted from research articles gathered from
the ACM and TEEE digital libraries. The author witnessed that one year after
the publication of the research articles, 80% of the cited URLs were accessible,
but this number decreased to 50% after four years.

Markwell & Brooks (2003) monitored 515 web pages from distance learning
courses for 24 months. During this time, the authors witnessed that over 20%
of the URLs became nonviable, moving without automatic forwarding or having
their content changed.

Lawrence et al. (2000) analyzed the persistence of information on the web,
looking at the percentage of invalid URLSs contained in academic articles published
since 1993 within the CiteSeer database and validated them in May, 2000. They
studied the causes for the invalid URLs and proposed solutions for citing and
generating URLs to improve citation persistence.

The results suggest that the URLSs cited from articles kept in digital libraries

tend to be more persistent than those cited from web pages.

23

2. BACKGROUND AND RELATED WORK

2.2 Crawling

Designing a crawler to harvest a small set of well-defined URLs is simple. How-
ever, harvesting information spread across millions of pages requires adequate
selection criteria and system architectures. Most crawlers adopt distributed ar-
chitectures that enable parallel crawling to cope with the large size of the web.
Web warehouses use crawlers to extract data from the web. This section
presents crawler types and their operation. Then, it discusses architectural op-
tions to design a crawler and strategies to divide the URL space among several
crawling processes. Finally, it provides crawler examples and compares their

design and performance.

2.2.1 Crawler types and functioning

Crawlers can be classified in four major classes according to their harvesting

strategies:

Broad. Collect the largest amount of information possible within a limited time
interval (Najork & Heydon, 2001);

Incremental. Revisit previously fetched pages, looking for changes (Edwards
et al., 2001);

Focused. Harvest information relevant to a specific topic, usually with the help
of a classification algorithm, to filter irrelevant contents (Chakrabarti et al.,
1999);

Deep. Harvest information relevant to a specific topic but, unlike focused crawlers,
have the capacity of filling forms in web pages and collect the returned pages
(Ntoulas et al., 2005; Raghavan & Garcia-Molina, 2001).

Although each type of crawler has specific requirements, they all present a
similar functioning. A crawl of the web is bootstrapped with a list of URLs,
called the seeds, which are the access nodes to the portion of the web to crawl.
For instance, to crawl a portion of the web containing all the contents hosted in
the .GOV domain, URLs from that domain should be used as seeds. Then, a

24

2.2 Crawling

crawler iteratively extracts links to new URLs and collects their contents. The
seeds should be carefully chosen to prevent the crawler from wasting resources
visiting URLs that do not reference accessible or relevant contents. They can be

gathered from different sources:

User submissions. The seeds are posted by the users of a given service. How-
ever, many of them are invalid because they were incorrectly typed or ref-

erence sites still under construction;

Previous crawls. The seeds are extracted from a previous crawl. The main
problem of this source of seeds is that URLs have short lives and an old

crawl could supply many invalid seeds;

Domain Name System listings. The seeds are generated from domain names.
However, the domains reference servers on the Internet and some of them
are not web servers. So, the generated seeds may not be valid. Another
problem is that the lists of the top-level domains of the web portion to be

crawled are usually not publicly available.

2.2.2 Requirements

There are several types of crawlers. Although each one has specific requirements,

they all share ethical principles and address common problems. A crawler must
be:

Polite. A crawler should not overload web servers. Ideally, the load imposed
while crawling should be equivalent to that of a human while browsing. A
crawler should expose the purposes of its actions and not impersonate a
browser, so that webmasters can track and report inconvenient actions. A
crawler must respect exclusion mechanisms and avoid visits to sites where it
is not welcome. The Robots Exclusion Protocol (REP) makes the definition
of access rules on a file named robots.txt that is automatically interpreted by
crawlers (Koster, 1994). An author of an individual page can also indicate
if it should be indexed and if the links should be followed by a crawler
through the ROBOTS HTML meta-tag (The Web Robots Pages, 2005);

25

2. BACKGROUND AND RELATED WORK

Robust. The publication of information on the web is uncontrolled. A crawler
must be robust against hazardous situations that may affect its performance

or cause its mal-functioning;

Fault tolerant. Even a small portion of the web is composed by a large number
of contents, which may take several days to be harvested. Crawlers fre-
quently present a distributed architecture comprising multiple components
hosted on different machines. A crawler must be fault tolerant so that its
performance may degrade gracefully if one of its components fails, without

compromising the progress of the crawl on the remaining machines;

Able to collect meta-data. There is meta-data temporarily available only dur-
ing the crawl (e.g. date of crawl). A crawler should keep these meta-data
because it is often required by the WWh clients. For instance, the Content-
Type HTTP header field identifies the media type of a content. If this

meta-data element is lost, the content type must be guessed later;

Configurable. A crawler should be highly configurable to enable the harvesting

of different portions of the web without suffering major changes;

Scalable. The crawl of a portion of the web must be completed within a limited
time and the download rate of a crawler must be adequate to the require-
ments of the application that will process the harvested data. A WWh that
requires weekly refreshments of data cannot use a crawler that takes months
to harvest the required web data. The download rate of the crawler is al-
ways limited by the underlying resources, such as the number of machines.
However, a crawler must be designed to scale its performance proportionally

to available resources;

Economic. A crawler should be parsimonious with the use of external resources,
such as bandwidth, because they are outside of its control. A crawler may
to connect the Internet through a large bandwidth link but many of the

visited web servers do not;

Manageable. A crawler must include management tools that enable the quick

detection of its faults or failures. For instance, a hardware failure may

26

2.2 Crawling

Crawling Crawling Crawling Crawling

Process Process Process Process

Local Local Local Local
Frontier Frontier Frontier Frontier

Crawling Crawling
Process Process Local Local

Frontier Frontier Frontier Frontier
Crawling Crawling Crawling Crawling Crawling
Process Process Process Process Process

(a) Centralized frontier. (b) Distributed frontier. (c) Hybrid frontier.

—
Global
Frontier

Figure 2.1: Crawler architectures.

require human intervention. On the other hand, the actions of a crawler
may be deemed unacceptable to some webmasters. So, it is important to
keep track of the actions executed by the crawler for latter identification

and correction of undesirable behaviors.

2.2.3 Architectural options

A crawler is composed by a Frontier that manages the URLs and the Crawling
Processes that iteratively harvest contents from the web and store them locally.
A Crawling Process (CP) iteratively gets a seed from the Frontier, downloads the
referenced content, parses it, extracts the linked URLs and inserts them in the
Frontier to be harvested. A crawl finishes when there are no seeds left to visit or
a limit date is reached.

A simple crawler can be assembled from only one CP and one Frontier. This
is what is known as an off-line browser. Simple crawlers like this are suitable for
storing local copies of sites by individual users. However, the download rate pro-
vided by this architecture is not scalable. Large-scale crawlers parallelize crawl-
ing using several Crawling Processes at the cost of increasing its complexity. The
URL space must be partitioned to enable parallel harvesting and the Crawling
Processes must be synchronized to prevent multiple harvests of the same URLs.

The Frontier is the central data structure of a crawler. Some URLs are linked

from many different pages. Thus, every time a CP extracts an URL from a link

27

2. BACKGROUND AND RELATED WORK

embedded in a page, it must verify if the URL already existed in the Frontier
to prevent overlapping. This verification is known as the URL-seen test and
demands permanent access to the Frontier (Heydon & Najork, 1999). There are

three approaches for organizing the Frontier:

Centralized. In this organization, the Crawling Processes share a single Global
Frontier (see Figure 2.1(a)). The URL-seen test is permanently being exe-
cuted on the Global Frontier by all the Crawling Processes. This architec-
ture is conceptually simple but the Frontier becomes a potential hot-spot

of the system;

Distributed. The Frontier is a cooperative set of Local Frontiers (see Fig-
ure 2.1(b)). There is not a central point of congestion because the URL-seen
tests are distributed by the Local Frontiers. However, the URL-seen test
imposes frequent synchronization among the Local Frontiers, which may

become a bottleneck;

Hybrid. The Frontier is distributed among several Local Frontiers that period-
ically synchronize with a central Global Frontier (see Figure 2.1(c)). This
approach does not concentrate the load of the URL-seen test on a single
component. It does not either require frequent synchronization among the
Local Frontiers. However, the design of the crawler is more complex than

with previous approaches.

2.2.4 Web partitioning and assignment

A partitioning function maps an URL to its partition. The main objective of
partitioning the URL space is to distribute the workload among the Crawling
Processes, creating groups of URLs that can be harvested independently. After
partitioning, each CP is responsible for harvesting exclusively one partition at a
time. The partitioning strategy has implications on the operation of the crawler.

In general, the following partitioning strategies may be considered:

IP partitioning. Each partition contains the URLs hosted on a given IP ad-

dress;

28

2.2 Crawling

Site partitioning. Each partition contains the URLs of a site. This partitioning
schema differs from the above, because several sites may be hosted on the

same IP address (virtual hosts) and each will be crawled separately;

Page partitioning. Each partition contains a fixed number of URLs indepen-
dently from their physical location. A partition may contain URLs hosted
on different sites and IP addresses. Page partitioning is suitable to harvest

a selected set of independent pages spread on the web.

Initially, each partition contains only a set of seeds. A partition is assigned
to a CP that becomes responsible for harvesting the correspondent URLs. The
assignment process can be static or dynamic (Cho & Garcia-Molina, 2002).

In the static assignment, the partitions are assigned before the beginning of
the crawl. Each CP knows its partition and assigns the URLs extracted from
pages to the partitions responsible for their crawl. The static assignment imposes
that the number of Crawling Processes is constant during the crawl to guarantee
that all partitions are harvested. The partitions assigned to a CP would not be
harvested if it failed and could not be recovered. Moreover, one cannot increase
the number of Crawling Processes to accelerate a crawl, because all the partitions
were mapped to the initial set of Crawling Processes.

In the dynamic assignment, a central coordinator assigns the partitions dur-
ing the crawl. This approach supports having a variable number of Crawling
Processes. The performance of the system degrades if a CP fails, but this does
not compromise the coverage of the crawl. There are two strategies for dynamic

assignment according to the behavior of the coordinator:

Push. The coordinator sends partitions to the Crawling Processes. It keeps an
accurate state of the system to balance the load efficiently. The coordina-
tor is responsible for monitoring the set of active Crawling Processes and
contact them to assign partitions. So, it has the overhead of establishing
connections, detecting and managing possible failures of the Crawling Pro-
cesses. This approach enables the concentration of the crawler management

on a single component which facilitates administration tasks;

29

2. BACKGROUND AND RELATED WORK

Pull. The coordinator waits for requests of partitions to crawl by Crawling Pro-
cesses. It does not have to permanently monitor the system because the
Crawling Processes demand work on a need basis. The number of Crawling
Processes may be variable without imposing any overhead on the coordina-

tor because it simply responds to requests for uncrawled partitions.

2.2.5 Crawler examples

Web crawling has been receiving increasing interest from the research community
since Brian Pinkerton presented the WebCrawler (Pinkerton, 1994).

Heydon & Najork (1999) presented a detailed description of the architec-
ture and implementation of a broad crawler named Mercator, exposing situations
hazardous to crawling found on the web. Later, Broder et al. (2003) investigated
URL caching techniques to improve the detection of visited URLs in Mercator.

The Googlebot is present in the Google original research paper (Brin & Page,
1998). The WebBase crawler was a result of the continuation of that academic
project (Cho et al., 2004).

Silva et al. (1999) described the CobWeb crawler, one of the components of a
search engine for the Brazilian web that used proxy servers to reduce implemen-
tation costs and save network bandwidth when updating a set of documents.

Boldi et al. (2002b) presented the Ubicrawler, giving special attention to its
fault tolerance and scalability features.

Shkapenyuk & Suel (2002) presented the design and implementation of a high
performance distributed crawler named Polybot.

Yan et al. (2002) presented the architectural design and evaluation of the
Webgather crawler aimed to collect pages hosted in Chinese TP addresses.

The Kspider is a cluster based web crawler (Koht-Arsa, 2003; Sanguanpong
& Koht-Arsa, 2003). Tts authors presented technical optimizations and studied
the partitioning of URLs among the Crawling Processes to ensure load balancing
and avoid overloading the visited web servers.

Castillo (2004) discusses effective crawling techniques, presenting a crawler’s
implementation and the results obtained in several experiments performed while

harvesting the Chilean web.

30

2.2 Crawling

Crawler Frontier | Partitioning | Assignment | Meta- | Focused
name data crawls

Googlebot | centralized ? ? no no
Kspider distributed page static no no
Mercator | distributed site static yes no
Polybot distributed page dynamic-push no no
Ubicrawler | distributed site dynamic-? no no
WebBase hybrid site dynamic-push no no
Webgather | distributed IP static no no

Table 2.8: Crawler design options.

The Internet Archive introduced an open-source web crawler called Heritrix,
specially designed to collect and archive large collections of documents from the
web (Mohr et al., 2004).

Cho et al. (1998) studied how to order a fixed set of URLs so that the most im-
portant pages could be crawled first, implemented an incremental crawler (Cho &
Garcia-Molina, 2000a), proposed and evaluated several architectural alternatives
(Cho & Garcia-Molina, 2002).

2.2.5.1 Design comparison

Table 2.8 compares the design of some of the crawlers described in previous works.

In the Googlebot, the Frontier is centralized on a single URL server that
distributes URLs among a set of Crawling Processes.

The Kspider is composed by a cluster of Crawling Processes that collabora-
tively maintain the Frontier and harvest the web. The URL space is partitioned
uniformly among the Crawling Processes through the application of a hash func-
tion on the URLs. However, each CP groups the URLs hosted on the same site to
enable the reuse of connections. When a CP finds an URL that does not belong
to its partition, it sends it to the correspondent CP.

The Mercator crawler distributes the URLs to visit among several Crawling
Processes that communicate using TCP. The URL space is divided using a site

partitioning strategy.

31

2. BACKGROUND AND RELATED WORK

In the Polybot crawler, the Frontier is distributed among a set of inter-
communicating Crawling Applications and the URL space is partitioned uni-
formly through a hash function. The Crawling Applications send packets of
URLs to the Crawl Manager, which assigns each one of them to a Downloader
that crawls it. The Crawler Manager ensures that courtesy pauses are respected,
caches DNS lookups and robots exclusion files. The communication among the
processes is done through a NFS-mounted file system.

The Ubicrawler is composed by inter-communicating agents responsible for
managing the Frontier and crawling the web. The assignment is dynamic, but
there is not a central node of coordination because it is achieved through con-
sistent hashing. Inside each agent, the URLs are partitioned per site among the
threads, each one dedicated to visiting a single site. The number of agents can
vary during the crawl, which makes Ubicrawler robust to failures and able to to
increase download rate with additional agents. It is unclear if the agents pull
URLs to crawl or if they are pushed from other agents.

The Webgather is composed by a static set of Main Controllers that com-
municate among each other to jointly manage the Frontier. The URL space is
partitioned among the Main Controllers in the beginning of the crawl through
the application of a hash function to the TP addresses of the machines to visit (IP
partitioning strategy). Each Main Controller has an associated Gatherer that is
responsible for crawling the web.

In the WebBase crawler, the URL space is partitioned by site. The Crawling
Processes pull seeds from a central point of coordination named the Seed-URL
Dispenser. The management of the Frontier is hybrid. The Seed-URL Dispenser
manages the seeds and each CP manages the URLs extracted from the harvested
pages. A CP harvests several sites simultaneously. To prevent DNS resolution
from becoming a bottleneck during the crawl, all the site names are resolved in
advance and the correspondent IP addresses are kept along with the seeds. How-
ever, this approach was time-consuming: it took three days to resolve 310 000
domain names and imposed a heavy continuous load on the DNS servers. The
WebBase crawler only harvests the sites contained in the seeds list. The links to
new sites found during the crawl are not harvested, they are added instead as

seeds of the following crawl. This approach simplifies the crawling task because

32

2.3 Web Warehousing projects

Client
Client
Client

@ Page Repository
3} ‘
Multicast
— / Module

R4/

Crawlers
Indexer
Module
Analysis
Module = =
sl | &
X
T I T Tt TTTT TS T T T T TS 1
1 1
1
| ! Query WebBase
! i —™|Engine [API
1
i Retrieval Feature |
: Indexes Repository 1

Figure 2.2: WebBase architecture (source: Cho et al. (2004)).

there is no exchange of URLs between the Crawling Processes, thus, no need for
synchronization between the parts of the Frontier managed by them. However,
this approach requires an exhaustive list of seeds that covers completely the por-
tion of the web that will be harvested. For instance, to crawl all the sites from
the .COM domain, the WebBase crawler requires seeds for all the sites registered

under this domain.

2.3 'Web Warehousing projects

The interest in Web Warehousing has grown in the last years. The emergence
of the web as a main source of information and the economical success of web-
based companies, such as Amazon, Google and Yahoo!, raised the interest in Web
Warehousing projects by commercial and academic institutions. This section

describes state-of-the-art Web Warehousing projects.

2.3.1 Stanford WebBase

The Stanford WebBase project aims to study effective algorithms for the acqui-

sition, storage and indexing of large-scale web collections (Cho et al., 2004). The

33

2. BACKGROUND AND RELATED WORK

researchers involved in the project described the architecture of a repository of
pages (Hirai et al., 1999) and how to select and refresh them (Cho, 2001; Cho &
Garcia-Molina, 2000b, 2002).

As experimental setup, the researchers developed a WWh that periodically
harnesses web data. The architecture of the WebBase system is presented in
Figure 2.2. The Crawlers harvest contents from the web and store them in a Page
Repository. The Multicast Module distributes the stored pages among the clients
trough streaming. These streams also feed the Inderer and Analysis Modules
that construct indexes on the web data. The WebBase API and Query Engine
enable the execution of queries over the stored data combining information from
several indexes.

The WebBase WWh has been used by research and teaching organizations
world-wide, mostly for research in web characterization and linguistic analysis
(Boldi & Vigna, 2004; Richardson & Domingos, 2002; Sydow, 2004). The main
advantage of using this WWh was that the researchers did not have to crawl the

web to begin their studies.

2.3.2 WebFountain

IBM developed a similar project called WebFountain to perform large-scale analy-
sis of texts (Gruhl et al., 2004; McCurley & Tomkins, 2004). Over 300 researchers
worldwide were involved in this project during four years.

The Semantic Web envisions the creation of machine-interpretable web data
that enhances the extraction of knowledge from it (W3C, 2004). However, its
implementation has been slow due to the divergence of standards and formats.
The WebFountain project developed systems to enable the automatic generation
of semantic annotations from the existent contents: the Seeker is a platform for
large-scale text analytics and SemTag is an application written on that platform
to perform automated semantic tagging on pages (Dill et al., 2004). The Seeker
architecture includes a centralized storage node, a full-text indexer, a scalable
crawler and a query processing component named the Joiner. The analysis agents
are applications that run within the Seeker environment. They were classified in

two classes:

34

2.3 Web Warehousing projects

AWSP Architecture

INTERNET

T
/ b =

Portal

=
Interactive o
Nodes

User Compute Cluster Data
Store Store

Figure 2.3: Architecture of the Alexa Web Search Platform (source: Sherfesee &
O’Driscoll (2005)).

Annotators: process each content independently to generate meta-data;

Miners: require the processing of several contents in conjunction to extract ad-

ditional information.

The characteristics of the web graph and the algorithms used to harness it
were thoroughly studied during the WebFountain project (Eiron et al., 2004;
Kumar et al., 2000, 2005).

2.3.3 Alexa Web Search Platform

The Alexa Web Search Platform (AWSP) is a commercial application that pro-
vides access to a vast crawl of the web (Sherfesee & O’Driscoll, 2005). Users
can process contents using the AWSP tools and hardware infrastructure. The
workflow begins with the definition of the portion of contents to process. Then,
the user writes an application to extract the desired information, runs it and
finally collects the results as an XML feed. The obtained results can be viewed

interactively, transferred or published as a new service.

35

2. BACKGROUND AND RELATED WORK

Figure 2.3 presents the AWSP architecture. The Data Store aims to keep an
up-to-date snapshot of the web, containing contents and meta-data. The contents
are kept for six months and are then replaced with new ones. The User Store
provides storage space where the users can keep their private data, such as source
code, applications or results from content analysis. The users can also use a
part of their storage space to share information with other users. The Compute
Cluster is a set of collaborative computers that enable the parallel execution of
user tasks. The Interactive Nodes are computers that can be accessed exclusively
by a single user. The Portal is the gateway to access the Alexa AWSP, where

users can manage their accounts and reserve resources to run their jobs.

2.3.4 Whoweda

Bhowmick et al. (2003) motivated the necessity of web warehouses with the differ-
ences existent between web data and the relational data that usually feeds data
warehouses. They proposed a WWh architecture and focused on the coupling
engine and the web manipulator modules. The coupling engine is responsible
for extracting relevant data from multiple sites and storing it in the WWh. The
web manipulator is responsible for manipulating the integrated data. The main
purpose of the research was to explore a data model and query language for
representing and storing relevant data from the web.

Query languages and access methods are important tools to harness web data.
However, the assumptions made in this research did not reflect the characteristics
of web data and may jeopardize the application of its contributions in practice.
For instance, the authors assumed that the web was composed by well-formed
HTML or XML documents (formatted according to the specification), or plain
texts. Pages dynamically generated were not considered within the scope of the
work and peculiar characteristics of web data, such as duplication, were also not
addressed. Several experimental studies contradict these assumptions. Around
30% of the documents on the web are not HTML (Heydon & Najork, 1999), the
number of XML files published on the web is not significative (Abiteboul et al.,
2000), most of the web pages are not well-formed (Woodruff et al., 1996), there are

36

2.3 Web Warehousing projects

much more dynamically generated web pages than static ones (Handschuh et al.,

2003) and duplication is pervasive on the web as it was shown in Section 2.1.3.3.

2.3.5 Search engines

Search engines were the first systems to implement large-scale web warehouses.
A research paper describes the original architecture of the Google search engine
when it was still an academic project (Brin & Page, 1998). Notably, after the
commercial success of this search engine, several papers continued to describe
its functioning. The architecture of the 15 000 commodity class PCs that com-
pose the Google search engine was described by Barroso et al. (2003) as well as
the software components specially developed to fulfill the needs of a large-scale
search engine (Ghemawat et al., 2003). Dean & Ghemawat (2004) presented the
Google’s MapReduce programming model created to simplify the data processing
on large clusters of machines. A programmer just needs to write two functions:
the map function that processes a key /value pair to generate a set of intermediate
key /value pairs and; the reduce function that merges all intermediate values asso-
ciated with the same intermediate key. The run-time system partitions the input
data, schedules the program execution across the cluster, guarantees fault toler-
ance and manages inter-machine communication enabling programmers without
experience in distributed systems to execute tasks in a distributed fashion (Pike
et al., 2005).

Hadoop is an Apache Software Foundation project that implemented an open-
source framework for running applications based on the MapReduce programming
model (The Apache Software Foundation, 2006). Hadoop also provides a fault-
tolerant distributed file system to store data across several machines. It was
successfully tested on a cluster of 620 storage nodes. Hadoop was originally part
of the Nutch project that created open source web-search software (Cafarella &
Cutting, 2004). Later, it became an independent project.

Lifantsev & Chiueh (2003) presented the design, architecture, implementation
and performance measurements of the Yuntis search engine prototype. Yuntis was

developed as an academic project for three years. The authors used Yuntis to

37

2. BACKGROUND AND RELATED WORK

evaluate a voting model for assessing quality and relevance of pages (Lifantsev,
2000).
Search engines can be divided in two classes according to the data they har-

ness:

Broad. Harvest the largest amount of pages or the most popular ones on the web
within a limited time interval, independently from the subjects addressed

in them;

Topical. Harvest information relevant to a specific topic from the web, usu-
ally with the help of a classification algorithm, to filter irrelevant contents
(Chakrabarti et al., 1999; Qin et al., 2004). A topical search engine may
be designed to fulfill the requirements of a given community of web users,

such as a national community (Almeida & Almeida, 2004).

Independently from their scope, search engines face similar design problems
that must be addressed according to the characteristics of the portion of the
web that is indexed, such as avoiding duplicated data from being harvested and

presented as different search results (Henzinger et al., 2002; Patterson, 2004).

2.3.6 Web archives

A web archive stores and enables access to web data for historical purposes. These
data must be periodically processed to ensure its preservation and accessibility.

The Internet Archive was the pioneer web archive system and it has been
executing broad crawls of the web since 1996 (Kahle, 2002). Currently, there
are 16 countries with well-established national web archiving programs (National
Library of Australia, 2006).

The National Library of Australia founded its web archive initiative in 1996
(Phillips, 2003). It developed the PANDAS (PANDORA Digital Archiving Sys-
tem) software to periodically archive Australian online publications, selected by
librarians for their historical value.

The British Library leads a consortium that is investigating the issues of

web archival (Consortium, 2006). The project aims to collect and archive 6 000

38

2.3 Web Warehousing projects

selected sites from the United Kingdom during two years using the PANDAS
software. The sites have been stored, catalogued and checked for completeness.

The MINERVA (Mapping the INternet Electronic Resources Virtual Archive)
Web Archiving Project was created by the Library of the Congress of the USA and
archives specific publications available on the web that are related to important
events, such as an election (The Library of Congress, 2006).

In December 2004, the Danish parliament passed a new legal deposit law that
calls for the harvesting of the Danish part of the web for the purpose of preserving
cultural heritage and two libraries became responsible for the development of the
Netarkivet web archive (Christensen, 2005).

The legal deposit of contents in France will be divided among the Institut
National de I’Audiovisuel (INA) and the National Library of France (BnF). Dru-
geon (2005) presented a detailed description of the system developed to crawl and
archive specific sites related to media and audiovisual. The authors estimated
that INA will be responsible for the periodic archive of 10 000 to 15 000 sites.
The BnF will be responsible for the archive of online writings and newspapers
and preliminary work in cooperation with a French national research institute
(INRIA) has begun (Abiteboul et al., 2002).

The National Library of Norway had a 3-year project called Paradigma (2001-
2004) to find the technology, methods and organization for the collection and
preservation of electronic documents (Albertsen, 2003). The main objective of
this project was to provide access to the archived data to the library’s users.

The NEDLIB project (1998-2000) grouped national libraries from several
countries and had the purpose of developing harvesting software specifically for
the collection of web resources for an European deposit library (Hakala, 2001).
The Austrian National Library together with the Department of Software Tech-
nology at the Technical University of Vienna, initiated the AOLA project (Aus-
trian On-Line Archive) (Rauber et al., 2002). The goal of this project is to build
an archive by periodically harvesting the Austrian web. The national libraries of
Finland, Iceland, Denmark, Norway and Sweden participate in the Nordic Web
Archive (NWA) project (Hallgrimsson & Bang, 2003). The purpose of this project
is to develop an open-source software tool set that enables the archive and access

to web collections.

39

2. BACKGROUND AND RELATED WORK

There were researchers that contributed with the study of systems to be used
in web archiving. Crespo & Garcia-Molina (1998) proposed a multi-layer archi-
tecture formed by a federation of independent, heterogeneous and collaborative
sites that ensured the preservation of documents and relationships among them,
through a replication schema. Later, this architecture was used in the Stanford
Archival Repository Project where simulators were included to evaluate the ef-
fectiveness of an archive over a long time span (Cooper et al., 2002). Burkard
(2002) presented a web archival system based on a Peer-to-Peer architecture called
Herodotus. You & Karamanolis (2004) evaluated of compression file techniques

to efficiently archive web data.

2.4 Conclusions

This chapter presented previous works on web characterization, crawling and Web
Warehousing systems. Research in these fields remains active because the web
is permanently evolving. New models are required to reflect the current state of
the web, crawlers have to select and harvest larger amounts of data and efficient
Web Warehouses are required, because they became essential tools to extract
knowledge from web data.

Web warehouses are usually loaded with a portion of the web relevant to a
community of users. Several web characterization studies showed that the web
is composed of distinct portions with peculiar characteristics. It is important to
accurately define the boundaries of these portions and model them, so that the
design of a WWh can reflect the characteristics of the data it will store. The
methodology used to sample the web influences the derived characterizations.
Hence, the samples used to model a portion of the web must be gathered using
a methodology that emulates the extraction stage of the web data integration
process. As most web warehouses use crawlers to extract information from the
web, this is the most adequate sampling method.

Previous works focused on architectural aspects of web crawlers and ware-
houses. There are high-performance crawlers that enable the quick refreshment
of the data kept in a WWh. Web Warehousing projects produced complete sys-

tems able to harvest, store and provide access to large amounts of web data.

40

2.4 Conclusions

However, most research in these domains has assumed that the web is uniform,
an assumption not supported by the results obtained in web characterization
studies.

This thesis discusses how the characteristics of a portion of the web could
influence the design of a WWh. The next two Chapters present a model for a
national web. They discuss how the crawling process can bias a web characteri-

zation and, on its turn, how the web characteristics can influence the design of a
WWh.

41

Chapter 3

Characterizing the structural

properties of a national web

The web can be characterized from multiple perspectives using numerous metrics.
This is a challenging task, mainly because of its heterogeneity, large dimension
and permanent evolution (Leung et al., 2001). Producing a feasible general char-
acterization is hard, and some statistics derived from the analysis of the global
web may not hold as one scales down to more restricted domains. The web
has portions with specific characteristics that, given their small presence, do not
become visible in a general web characterization. However, these portions can
be of interest to large communities, such as those representing national or cul-
tural groups. Additionally, characterizing a small partition of the web is quite
accessible and can be done with great accuracy.

In general, a Web Warehouse (WWh) is populated with contents relevant
to a given community of users corresponding to a portion of the web. As a
result, a characterization of the portion of the web to be warehoused is crucial
to efficiently design and manage a WWh. The results presented in the previous
chapter showed that the web is not uniform and there are portions of it with
peculiar characteristics.

The Portuguese Web, broadly defined as the set of contents of cultural and
sociological interest to the people of Portugal, was used in this thesis, as a case
study. It has been extensively characterized and crawled to feed a WWh between
2003 and 2006.

43

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

This chapter presents a detailed characterization of the Portuguese Web. As
the methodologies used to gather web samples can influence a web characteriza-
tion, crawling was used to sample the web, because it is the most commonly used
web data extraction process. However, the crawler configuration can also influ-
ence a web characterization. This chapter details the adopted crawling policy and
shows how the crawling and data analysis processes can strongly influence other
statistics. The statistics themselves are interesting to anyone who manipulates
these data or will compare them with future characterizations. In addition, the
identification of meaningful statistics for a community web characterization and
the methods used to gather and interpret the collected data could be useful to a
wider audience those interested in the Portuguese Web in particular.

This chapter is organized as follows: Section 3.1 discusses selection criteria for
delimiting the boundaries of the Portuguese Web as a crawling policy. The fol-
lowing section describes the experimental setup used to derive the web character-
ization. Section 3.3 presents the obtained model of the Portuguese Web, detailing
the characteristics of its sites, contents and link structure. Finally, Section 3.4
presents the main conclusions derived from the experience of characterizing the

structural properties of the Portuguese Web.

3.1 Identifying the boundaries of a national web

The identification of a community web is not always obvious, despite of available
methods that can be used to identify its sites (Flake et al., 2000). A precise
definition of which contents should constitute a community web is in general
hard to obtain and is conditioned by the rules and resources used.

A country’s web is interesting to communities of users that are interested
in information with a national scope. For instance, when users look for the
"National Library" site, they want to find the site of the library of their country.
Empirically, a national web is the set of contents that contain information related
to a given country. However, this definition is subjective and therefore hard to
be translated into machine-understandable heuristics.

The country-code Top Level Domains (c¢TLD) are delegated to national man-

agers to fulfil the local requirements. Thus, sites with domain names under a

44

3.1 Identifying the boundaries of a national web

ccTLD should be included in a national web. However, due to the strict legal
requirements and costs for domain registrations imposed in some countries for do-
main registrations, many sites containing information related to a national web
are registered under general purpose Top Level Domains (gTLD), such as .COM.
To overcome this problem, a national web could also include contents hosted on
IP addresses that are physically assigned to a given country (Baeza-Yates et al.,
2005). However, the physical location of an IP address is provided by databases,
such as the RIPE Network Management Database (RARE, 1992), that sometimes
provide erroneous locations for IP addresses. Moreover, due to the global nature
of the Internet, publishers tend to use the hosting services that provide better
prices, independently from the physical location of their servers. Therefore, sites
with gTLDs hosted on foreign IP addresses are not part of a national web accord-
ing to this definition. Some languages, such as Swedish, are spoken in a single
country in the world. In these cases, a national web can be identified as the set
of contents written in a given language (Albertsen, 2003). However, other lan-
guages, such as English or Portuguese, are spoken in several different countries
and cannot be considered a defining criterion for a national web. The WHOIS
databases contains contact information about the owners of domain names or 1P
addresses (Harrenstien et al., 1985). Therefore, they could be used to identify
sites owned by people of a given country. However, there are domain owners that
provide subdomains to host foreign sites, such as blogspot.com, in these cases
the contents of the sites are not related to the domain owners.

One could consider a national web as the union of the sites identified by all the
presented heuristics. Probably, this approach would a achieve a good coverage of
a national web. On the other hand, it would include contents that users would
not consider as belonging to a given national web. The automatic identification
of national webs is interesting to relatively large communities of users. However,

it is not straightforward to achieve.

3.1.1 Definition of the Portuguese Web

The Portuguese Web is broadly defined as the set of contents containing informa-

tion related to Portugal or of major interest to the Portuguese people. As defining

45

blogspot.com

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

rule, a content was considered as part of the Portuguese Web if it satisfied one of

the following conditions:
Condition 1: hosted on a site under the .PT domain;

Condition 2: hosted on a site under the .COM, .NET, .ORG or . TV domains,
written in Portuguese and with at least one incoming link originating in a

page hosted under the .PT domain.

This definition aims to be easily set as a crawling policy and to guarantee that
the crawler obtains the best coverage of the Portuguese Web.

Condition 1 goal is to include the sites that form what was considered the
core of the Portuguese Web. A list of the most popular sites, accessed from the
homes of a panel of Portuguese users, during 2002 and 2003, showed that 49.5%
of the sites were hosted under the .PT domain (Marktest, 2003).

Condition 2 goal is to include the increasing number of Portuguese sites that
are registered outside the .PT domain (Zook, 2000). Previous work showed that
the link structure of the web can be used to define communities (Flake et al.,
2000; Gibson et al., 1998). Condition 2 assumes that the probability of a site
hosted outside the .PT domain belonging to the Portuguese Web community
decreases as the number of hops in the web graph to the core increases. So, in
order to restrict the inclusion of sites outside the .PT domain to those with the
highest probability of being part of the Portuguese Web, the number of hops
was limited to 1. Condition 2 imposes that only contents directly linked from a
site hosted under the .PT domain are part of the Portuguese community web.
However, Brazilian contents linked from the .PT domain and hosted under the
allowed domains, such as .COM will still be considered as part of the Portuguese
Web.

3.1.2 Finding contents outside the ccTLD

A definition of a national community web has an implicit geographical context.
An experiment was conducted with the purpose of comparing the coverage of
the Portuguese community web outside the .PT domain (Condition 2) with three

alternative heuristics that used tools to assign geographic context data for sites.

46

3.1 Identifying the boundaries of a national web

DNS LOC. Geographic information for the sites could be obtained by querying
a special DNS record (LOC) that carries location information about hosts,
networks, and subnets (Davis et al., 1996). A site was considered as part
of the Portuguese Web if the DNS LOC located it in Portugal,

Geographical tools. Two commercial tools, Ip2location (Hexa Software Devel-
opment Center, 2003) and Maxmind (Maxmind LLC, 2003) have been used
to extract a geographical location for a site. A site was considered as part
of the Portuguese Web if the tool returned that the site was located in Por-
tugal. For two submissions of the same site, Maxmind returned different
results. Except for this situation, both tools presented the same results,

which suggests that they are based on the same data;

WHOIS database. This heuristic consisted on accessing a WHOIS database
to identify the Portuguese sites. For each site, the contact address for the
correspondent domain registrant was obtained. If this address was located

in Portugal, the site was considered as part of the Portuguese Web.

The experimental data set was composed by the following list of 25 Por-
tuguese sites hosted outside the .PT domain informally suggested by a group of
Portuguese users in 2003. The suggested sites were humanly examined to verify
if their contents were related to the Portuguese community. All the sites were
written in Portuguese and referred to distinct subjects, such as sports, humor or
radio.

The definition of the Portuguese Web described in the previous section, based
on language identification and the link structure of the web, was validated by
checking if the sites had at least one incoming link from a site hosted under
the .PT domain. The search engines Google (Google, 2003) and AllTheWeb
(Overture Services Inc., 2003) were used to identify pages that link to the sites.

Table 3.1 presents the results given by the four heuristics to identify Por-
tuguese contents outside the .PT domain.

None of the sites had an associated DNS LOC record.

The geographical tools identified only 44% of the Portuguese sites, although
they always returned an answer to the location requests. 76% of the Portuguese

sites were identified through the registrant information.

47

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

Heuristic % sites identified
DNS LOC 0%
Geographical tools 44%
WHOIS registrant address 76%
Language and links 82%

Table 3.1: Comparison between alternative definitions of the Portuguese Web
for a sample of 25 sites.

The WHOIS database did not contain the information regarding the requested
domain for 24% of the sites. For some of these cases, the registrant information
was found on another WHOIS server. As there is not a central WHOIS database,
the registrants information is distributed over the several registrars, which causes
inconsistencies among WHOIS databases. The registrant address revealed to be a
precise method to identify Portuguese sites outside the .PT domain. All the sites
in the list which had a WHOIS record available were correctly identified. There-
fore, the WHOIS databases could be the solution to the problem of distinguishing
Brazilian sites from Portuguese sites outside the .PT domain. However, most of
the WHOIS databases are not publicly available or explicitly forbid their access
by automated programs, which collides with the purpose of having a definition
of the Portuguese Web that can be implemented as a crawling policy. There are
several record formats in use, which also makes it difficult to automatically pro-
cess WHOIS records. Additionally, some of the companies that provide hosting
services put distinct sites identified by sub-domains under the same domain and
the WHOIS registries only keep information about second-level domains. This it
is a serious restriction considering, for instance, all the Portuguese Blogs hosted
under blogspot.com. Hence, this heuristic excludes from the Portuguese Web
many Portuguese sites hosted outside Portugal.

82% of the suggested sites would be included in the Portuguese Web using
the initially proposed definition of the Portuguese Web: they were written in the
Portuguese language and had at least one link from a site hosted under a .PT

domain.

48

blogspot.com

3.2 Experimental setup

3.2 Experimental setup

This section describes the crawler configuration and the data set used to derive

a characterization of the structural properties of the Portuguese Web.

3.2.1 Crawler configuration

Crawlers are configured according to the purpose of the data they gather. The
crawler was configured to get the most textual contents as possible from the
Portuguese Web, under the minimum set of constraints that ensure an acceptable
performance, considering the resources available and the need to make it robust
against the anomalies found on the web.

A content was considered to be valid if it was part of the Portuguese Web, as
defined in the previous section. In addition, the following crawler conditions had

to be met:

Multiple text types. The crawler harvested not just pages, but also contents
of common MIME application types that it could convert to text. Accepted
MIME types are: text/html, text/richtext, text/tab-separated-values, tex-
t/plain, text /rtf, application/pdf, application /rtf, application /x-shockwave-
flash, application /x-tex, application /msword, application /vnd.ms-excel, ap-
plication/excel, application /mspowerpoint, application /powerpoint and ap-

plication /vnd.ms-powerpoint;

URL depths less than 6. The crawler followed at most five links in breadth-
first search order, from the seed of the site until it reached the referenced
content. When crawling a site, any link found to a different site was set
as a seed to that site. This way, any page with a link originated on a .PT
domain would be visited, including Portuguese subsites hosted on foreign
countries. Consider for instance, the site www.yahoo.com and its Portuguese
subsite www.yahoo.com/users/myPortugueseSite/. If the crawler had vis-
ited only the seed www.yahoo.com, it would had identified that the site was
not part of the Portuguese Web, and exited without finding the Portuguese

subsite;

49

www.yahoo.com
www.yahoo.com/users/myPortugueseSite/
www.yahoo.com

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

Contents downloaded in less than one minute. This prevents very slow web

servers from blocking the progress of the crawl;

Contents size under 2 MB. This prevents the download of very large files

available on the web, such as database dumps.

3.2.1.1 Spider trap biasing and mitigation

A crawler trap is a set of URLs that cause a crawler to traverse a site indefinitely.
A crawler trap is noticed due to the large number of contents discovered in the
site (Heydon & Najork, 1999). Most of the traps are unintentional, being caused
mainly by session identifiers embedded in the URLs, or poorly designed HTTP
web applications that dynamically generate an infinite number of URLs, which
in turn reference a small set of contents. This raises the issue of how should these
contents be considered in a characterization. They should not be excluded be-
cause they are available online and represent part of the web. However, they can-
not bias a characterization with their "infinite" presence. The solution adopted
was to set the crawler as a very patient web surfer as a compromise. The crawler
was set to visit a maximum of 8 000 URLs per site, to prevent the crawling of
infinite sites.

After seeing 50 duplicates, the crawler gives up on following links for a site,
keeping all the information crawled until then. This limitation intends to avoid
spider traps that always return the exact same content. If the trap generates
slightly different contents, it will be identified when the site reaches the maximum
number of contents allowed. A criterion that identifies contents with distinct
URLs and contents as being similar enough to be considered the same is highly
subjective. Plus, the computation of partial similarity between contents is too
expensive to be applied in the identification of spider traps during the crawling
process.

An intentional trap could be created using DNS wildcarding (Mockapetris,
1987) to resolve any possible host name within a domain to the same IP address,
generating an infinite number of host aliases and giving crawlers the illusion
that each site serves only a small number of pages. In order to mitigate this

situation, the crawler avoids harvesting host aliases by identifying them through

50

3.2 Experimental setup

State Nr. URLs | %
200 (OK) 3235140 | 83.9
302 (Temporary redirect) 193 870 5.0
404 (Not found) 132834 | 3.4
TimedOut 45 486 1.2
301 (Moved permanently) 39 920 1.0
ExcludedByREP 35 596 0.9
500 (Internal server error) 33 247 0.9
NotAllowed Type 25 976 0.7
403 (Forbidden) 18 598 0.5
UnknownHost 17 842 0.5
SizeTooBig 17 453 0.5
ConversionError 13 986 0.4
Other 23 244 0.6
Total 3 856 436 | 100.0

Table 3.2: Status codes of the visited URLs.

a pre-computed list gathered from a previous crawl. If two sites were hosted on
the same IP address and had the same home page, they were considered host
aliases. The host aliases list was derived using online information before starting

the crawl, so that it could be as accurate as possible.

3.2.2 Data set

The sample of the Portuguese Web was crawled between the 1st of April and the
15th of May, 2003. The crawler was bootstrapped with a set of 112 146 seeds
gathered from:

e Previous crawls performed for the tumba! search engine;

e Site names derived from a list domains registered under the .PT domain
obtained from the official registry service. This list included all the second-
level domains under .PT plus, some third level domains administrated by

the same registry service, such as COM.PT;

e Sites submitted by Portuguese users to be included in the tumba! search

engine.

ol

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

All these sources of seeds were used to enable the harvesting of orphan sites,
also known as islands (Baeza-Yates et al., 2005). These sites do not receive links
from external sites and therefore are hard to be reached through the automatic
following of links in web pages.

The crawler visited a total of 146 076 sites, processed over 3.8 million URLs
and downloaded 78 GB of data!.

Table 3.2 presents the statistics of the download status of crawled URLs.
Almost 84% of the requests resulted in a successful download and only 3.4%
resulted in a 404 (File Not Found) response code, which indicates that most of
the seeds were valid and that broken links are not as frequent in this web as
reported in other studies (Najork & Heydon, 2001; Spinellis, 2003). There were
over 6% of redirections and the crawler failed to fetch and parse a content within
one minute in 1.2% of the requests. The Robots Exclusion Protocol prevented
the crawler from downloading 0.9% of the URLs, and about the same number of
URLs resulted in an Internal Server Error (500). The number of contents with a
not allowed MIME type (0.7%) is underestimated, because extracted links that
had names hinting that the referenced content did not belong to one of the allowed
types (e.g. files with a .JPEG extension) were not harvested. The UnknownHost
error (0.5%) is caused by URLs referencing site names that no longer have an
associated TP address. Only 0.5% of the referenced files had a size bigger than
2 MB and the conversion to text was not possible in 0.4% of the cases. The
remaining situations (0.6%) included other HTTP response codes, unidentified
errors, socket and connection errors; each of these represents less than 0.1% of

the total number of downloaded contents.

3.3 A model of the Portuguese Web

This section presents the statistics derived from the analysis of the data set. It

characterizes the main metrics that influence the design of a WWh.

! The information gathered in this crawl is available for research purposes at http://x1db.
fc.ul.pt/linguateca/WPT_03.html.

52

http://xldb.fc.ul.pt/linguateca/WPT_03.html
http://xldb.fc.ul.pt/linguateca/WPT_03.html

3.3 A model of the Portuguese Web

40%
35%
30%
25%
20%
15%
10%
5%
0% |
1 2-10 11-100 101-1000 >1000

number of contents

% of sites

Figure 3.1: Distribution of contents per site.

3.3.1 Site characteristics

A site groups contents that provide related inter-information or are hosted at the
same physical location. The characteristics of sites can be explored to extract
and store data efficiently in a WWh. As the definition of site may vary, this
section describes the site sizes considering that each of them is identified by a
site name or an IP address. Then, it describes the distribution of sites among
TLDs. Finally, this section presents statistics on the web server software used on

the Portuguese sites.

3.3.1.1 Site names

A Portuguese site hosts on average 70 contents, but the size distribution is very
skewed, as shown in Figure 3.1. The number of sites having a single content was
surprisingly high (38%). A visit to a random sample of these sites revealed that
most of them warned readers that the sites were under construction or moved
to a different location. There were also a few cases where the home page was
written using scripting languages preventing the crawler from extracting links to

find other contents within the site. A typical site had less than 101 contents

93

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

35%
30% -
25% A
20% -
15%
10% -
5% -
0% T T T T
1 2-10 11-100 101-1000 >1000

% of IP addresses

number of contents

Figure 3.2: Distribution of contents per IP address.

(93%); 6% had between 101 and 1 000 contents and only 1% of the sites had
more than 1 000 contents.

Only 577 sites (0.4%) hosted more than the maximum number of 8 000 con-
tents. Most of these sites were huge database dumps published online as dynam-
ically generated pages. The constraint on the maximum site size reduced the
number of unnecessary downloads and increased the robustness of the crawler, at

the cost of excluding less than 1% of the sites.

3.3.1.2 1IP addresses

The distribution of contents per IP address is more uniform than for site names
(see Figure 3.2). The percentage of TP addresses that host just one content is
28%., IP addresses that host 2 to 10 contents represent 33%, those which host
between 11 and 1 000 contents represent 33% and only 6% host more than 1 000
contents.

Table 3.3 shows that over 32% of the IP addresses host more than one site.
Each IP address hosts an average of 6.78 sites. Silva e al. (2002) compared results
from two crawls of the .PT domain performed in 2001 and 2002, and observed

that the number of sites per IP address grew from an average of 3.78 to 4.57 sites

54

3.3 A model of the Portuguese Web

Nr. sites per IP | Nr. IP addresses %
1 4 643 67.7

2-10 1931 28.2
11-100 247 3.6
101-1 000 30 0.4

>1 000 5 0.1
Total 6 856 100.0

Table 3.3: Distribution of the number of sites hosted per IP address.

per IP address. The result presented in this thesis suggests that the number of
sites hosted per IP address continues to grow. There are five IP addresses that
host more than 1 000 sites. These five IP addresses are from portals that offer
their clients a virtual host under the portal domain name.

Virtual hosts are very popular on the Portuguese Web: 82% of all sites are
virtual hosts. It is important to distinguish host aliases from distinct virtual
hosts. The first occur when multiple names refer to the same site, for instance
http://xldb.fc.ul.pt and http://x1db.di.fc.ul.pt. Distinct virtual hosts
are distinct sites hosted on the same machine, such as http://x1ldb.di.fc.ul.pt
and http://lasige.di.fc.ul.pt. An analysis of the data set revealed that 8.5%

of the virtual hosts were host aliases.

3.3.1.3 Domain distribution

A site is considered part of the Portuguese Web if it hosts at least one content is
considered part of the Portuguese Web. 46 457 (32%) of the 146 076 sites crawled
were identified as Portuguese sites. 84.2% of these, were under the .PT domain,
12.5% were under the .COM, 2.5% were under the .NET domain and just 0.8%
sites were under the .ORG (see Figure 3.3). 60% of the site names started with
"WWW".

3.3.1.4 Web servers

172 distinct HT'TP web servers have been identified through the analysis of the
Server HTTP header field (Fielding et al., 1999): Figure 3.4 presents their distri-
bution. The Portuguese sites are mainly hosted in Apache (57%) and Microsoft

99

http://xldb.fc.ul.pt
http://xldb.di.fc.ul.pt
http://xldb.di.fc.ul.pt
http://lasige.di.fc.ul.pt

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

NET ORG
COM 2.5%0.8%
12.5%

84.2%

Figure 3.3: Distribution of sites per top-level domain.

Netscape- oth
enterprise tz(;rs
1% 0
OracleYias

1%

Microsoft
1S

39% Apache

57%

Figure 3.4: Distribution of web servers.

o6

3.3 A model of the Portuguese Web

40%
35% -
30% //\\

9 25%

% 20% / \

< 15% / ~
10%
5%
0%

QO QO O O 0O O O O O N0 O
PRSP PRSP

length (characters)

Figure 3.5: Distribution of URL lengths.

I1S (39%) web servers. The next two web servers (Netscape-enterprise and Ora-
cle9ias) represent just 1% each and the remaining just 2%. Statistics on the global
web present a similar percentage of Apache web servers (62.5%), but a consid-
erably smaller percentage of Microsoft IIS servers (27.4%) (Netcraft Ltd., 2004).
On the other hand, the distribution of web server software on the Portuguese Web
contrasts with the one obtained by Boldi et al. (2002a) for the African web, in
which there is a dominance of Microsoft IIS over Apache (56.1% against 37.9%).

Some security experts encourage webmasters not to provide the Server HT'TP
field or to provide wrong answers in order to mislead possible attackers. From
my experience, I believe that these recommendations are usually not followed by
the Portuguese webmasters. However, if they become popular, it will be very

difficult to correctly identify the distribution of web server software.

3.3.2 Content characteristics

This section presents measurements regarding the URL length, media type, size,
language and meta-data of contents.

3.3.2.1 URL length

A WWh must have an efficient data structure that maps the URLs into the stored
contents, which must be designed according to the length of the URLs. However,

57

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

80 -
70 -

60 - .vé: \/r_#k‘
50
40
30 ~
20
10 -~
0 \

24-05- 10-12- 28-06- 14-01- 01-08- 17-02- 05-09- 24-03-
2002 2002 2003 2004 2004 2005 2005 2006

median crawl| date

URL length (characters)

Figure 3.6: Evolution of URL lengths.

the URLs’ length is in practice unlimited. Figure 3.5 shows the distribution of
URL lengths (not considering the initial seven characters of the protocol defini-
tion). The Portuguese Web contained valid URLs with lengths varying from 5 to
1 368 characters. Most of the contents are referenced by an URL with length be-
tween 20 and 100 characters, with an average value of 62 and a median of 54. An
analysis of the URLSs revealed that 82% contained parameters suggesting that the
referenced content had been dynamically generated. The growing popularity of
these contents could originate a growth of the URL lengths. However, Figure 3.6
shows that the length of the URLs of the Portuguese Web has remained quite
stable in the past years (2002-2006), presenting an average size of 62.5 characters
per URL.

3.3.2.2 Last-Modified dates

The HT'TP header field Last-Modified provides the date of the last modification
of a content. However, as shown in Figure 3.7, most of the contents (53.5%)
returned an unknown value for this field. Plus, Mogul (1999b) showed that even
the returned values are many times inaccurate due to incorrectly set web server
clocks (among other situations). An analysis of the URLs with unknown values
revealed that 82% of them had embedded parameters. I believe that most of

o8

3.3 A model of the Portuguese Web

contents
w
Q
>
|

Figure 3.7: Distribution of Last-Modified dates.

6%

5% -

4% -

3% -

2% -

1l
0% - ‘ ‘ ‘ ‘

1/2003 2/2003 3/2003 4/2003 5/2003
month

contents

Figure 3.8: Distribution of Last-Modified dates in the last four months before
the crawl.

99

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

MIME type Nr. of contents | %

text /html 3104 771 95.9
application /pdf 62 141 1.9
text/plain 33 091 1.0
application /x-shockwave-flash 17 598 0.5
application/msword 14 014 0.4
powerpoint 2 085 0.1

excel 915 0.0
application /x-tex 222 0.0
text /rtf 194 0.0
application /rtf 66 0.0
text/tab-separated-values 41 0.0
text /richtext 2 0.0

Total 3 235 140 100.0

Table 3.4: Number of contents and prevalence on the web for each MIME type
collected.

them were recently modified (see Figure 3.8), since mechanisms to dynamically
generate contents are usually used to reference short life contents, such as news.
The obtained results show that the Last-Modified header field is a weak metric

for evaluating changes and evolution of web contents.

3.3.2.3 Media type and size

The rightmost column of Table 3.4 shows the distribution of contents per MIME
type. All the MIME types used for Microsoft Powerpoint files are grouped under
the name powerpoint and all the Microsoft Excel files under the name excel.
The predominant text format is text/html, present in over 95% of the collected
contents, followed by application/pdf with just 1.9%.

The HT'TP header field Content-Length was analyzed to determine the size
of the contents, but 33% of the requests returned an unknown value. Hence,
the downloaded contents were analyzed and the unknown sizes were replaced by
their actual sizes. The differences on the average sizes between the results were
insignificant, except for text/html where the size grew from 12.2 KB to 20.5 KB.
In Table 3.5, the second and third columns show the average sizes of contents

and corresponding extracted texts (without any formatting tags), and the fourth

60

3.3 A model of the Portuguese Web

MIME Avg. content | Avg. text | % text
type size (KB) size(KB)

powerpoint 1 054.9 7.0 0.7
text /rtf 475.6 1.2 0.3
application /pdf 207.4 13.6 6.6
application /rtf 121.3 4.7 3.9
application /msword 118.6 9.9 8.3
excel 50.4 21.9 43.4
application /x-shockwave-flash 43.9 0.3 0.7
text/html 20.5 2.5 12.2
text/richtext 16.3 16.2 99.2
application /x-tex 16.1 14.7 91.2
text/plain 10.5 7.8 74
text/tab-separated-values 3.9 3.8 97.5

Table 3.5: Average size, extracted text size and percentage of extracted text.

column presents the ratio between the length of the extracted text and content
size. The smaller contents tend to provide more text than the larger ones. A
curious fact is how text/plain contents represent 74% of text. An analysis of some
of these contents revealed that some web servers return text/plain, when the file
type of the content is not recognized. Therefore, some PowerPoint Presentation
files (.PPS) or Java Archives (.JAR) were incorrectly processed as text/plain,
resulting in poor extraction of text from these files.

Figure 3.9 shows the general distribution of content sizes. Most contents have
sizes between 4 and 64 KB. The mean size of a content is 32.4 KB and the mean
size of the extracted texts is 2.8 KB. The total size of the contents was 78.4 GB,
while the total size of extracted texts was just 8.8 GB (11%). Hence, a WWh
that just keeps the extracted texts has much less demanding storage requirements
than one that stores the original contents.

The previous chapter referenced several works that state that the size of web
contents tends to increase. Figure 3.10 shows that the evolution of content sizes
on the Portuguese Web also follows this trend. In three years, the average size of
a content almost doubled. The growth of content size with time matches a linear
function with an R-squared value of 0.9163. This model is useful to estimate the

storage capacity required for a WWh.

61

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

30%
25% -
20% -
15% —

contents

10% 1
WININE

I USSP Y R AN S
LG < GNP SR A

size (KB)

Figure 3.9: Distribution of content sizes.

y = 0.0102x - 362.71

R?=0.9163
35 -

30 A
25 ~
20 -
15
10 -
5 |
0 ‘ ‘ ‘ ‘ ‘ ‘

24-05- 10-12- 28-06- 14-01- 01-08- 17-02- 05-09-
2002 2002 2003 2004 2004 2005 2005

crawl date

content size (KB)

Figure 3.10: Evolution of average content size.

62

3.3 A model of the Portuguese Web

Spanish French
1% 1%

Others

0,
German 1%

3%

Unknown
4%

English
17%

Portuguese
73%

Figure 3.11: Distribution of languages under the .PT domain.

3.3.2.4 Language

The language of the contents was identified based on an language detector that
implements an n-gram algorithm (Martins & Silva, 2005a). Figure 3.11 shows the
distribution of languages on the contents written in all languages hosted under the
PT domain: 73% of the contents were written in Portuguese, 17% in English, 3%
in German, 1% in Spanish, 1% in French and 1% in other languages. According
to O'Neill et al. (2003), on the global web 72% of the pages are written in English
and only 2% are written in Portuguese. Identifying the language of a content is
sometimes a hard task, because there are contents with short text or written in
several languages. The used language detector could not the language in 4% of

the contents.

3.3.2.5 Meta-tags

There are two widely used meta-tags supported by HIT'ML: description and key-
words (W3C, 1999). The description meta-tag provides a description of the page’s
information and the meta-tag keywords provides a set of keywords that search

engines may present as a result of a search. However, just 17% of the Portuguese

63

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

pages had the meta-tag description and, among these, the usage of this meta-
tag does not seem to be correct. There were only 44 000 distinct description
texts for 555 000 description meta-tags. This means that 92% of the texts of the

descriptions were repeated elsewhere. There are several causes for this situation:
e The meta tag value is a default text inserted by a publishing tool;

e The publisher repeated the same text in all the pages of its site, although
they are different;

e There are duplicates on the web.

The keywords meta-tag is present in 18% of the pages. A deeper analysis re-
vealed that 91% of the pages that have the description meta-tag also had the
keywords meta-tag. O’Neill et al. (2003) showed that the usage of meta-tags on
the global web has being increasing. In 2002, 70% of the pages included meta-
data. Although the presented results on the Portuguese Web focus only on two
meta-tags, they suggest that the usage of meta-tags on the Portuguese Web is
much less frequent than on the global web.

The titles of the pages are not very descriptive either. There were over 600 000
distinct titles for 3.1 million pages. The main reason for this observation is that

the title of the home page is used as the title for all the pages in the site.

3.3.3 Web structure

This section presents measurements on the duplication, link structure and popu-

larity of sites and contents on the Portuguese Web.

3.3.3.1 Duplication

Each content was identified by its MD5 digest to detect duplication (Rivest,
1992). There were 2 734 942 distinct contents and 15.5% of the URLs referenced
duplicates. Kelly & Mogul (2002) identified only 5% of duplicates when analyzing
a client trace from WebTV, but they used a different sampling methodology in
their experience that may have be responsible for the difference between the

results.

64

3.3 A model of the Portuguese Web

Number of duplicates | Number of Contents | % of contents
0 2 462 490 90.0
1 205 882 7.5
2 33 468 1.2
3 12 814 0.5
4 6 086 0.2
5 5272 0.2
6-10 6 453 0.2
11-100 2 318 0.1
101-1 000 154 0.0
>1 000 5 0.0
Total 2734942 100.0

Table 3.6: Distribution of contents with duplicates.

Table 3.6 presents the duplication distribution. Most of the contents (90%) are
unique and 7.5% had exactly one duplicate. Contents replicated more than 1 000
times are very rare. However, they were the cause of 13 146 downloads for just
five distinct contents. These five instances were all caused by mal-functioning
web servers, which always returned the same error page for all the requests.
These situations are pathological for crawlers and also tend to bias the collection
statistics. Unfortunately, the measures adopted against these traps were not
completely successful. When the crawler identified the trap due to the high
number of duplicates within the site, it stopped inserting new links but it already
had inserted numerous URLs to crawl.

The obtained statistics indicate that 42% of the duplicates were hosted on
the same site; 60% of the duplicates were hosted on a different site; 2% of the

duplicates were hosted both in the same site and in another site.

3.3.3.2 Link structure

This analysis focused on links between distinct sites. The links to URLs that
evidenced that the referenced content was not of one of the accepted types were
excluded. For instance, URLs where the file part has a .jpg extension were not
considered.

Most of the pages (95%), did not link to another Portuguese site (Figure 3.12).

On average, a Portuguese page has 0.23 links to contents on another site. This

65

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

Nr. links URL
1 3 540 cpan.dei.uc.pt/modules/00modlist.long.html
2 2 425 ftp.ist.utl.pt/pub/rfc/
3 2 309 homepage.oninet.pt/095mad/bookmarks_on_mypage.html
4 1632 www.fis.uc.pt/bbsoft/bbhtm/mnusbib3.htm
5 1621 cpan.dei.uc.pt/authors/00whois.html
6 1532 www.fba.ul.pt/links4.html
7 1 458 boa.oa.pt/bbsoft2/bbhtm/mnusbib3.htm
8 1 346 wWw.esec-canecas.rcts.pt/Educacao/Escolas.htm
9 1282 pisco.cii.fc.ul.pt/nobre/hyt/bookmarks.html
10 1181 www.fpce.uc.pt/pessoais/rpaixao/9.htm

Table 3.7: The 10 contents with highest number of outgoing links.

10000000
1000000

100000 -
10000 -
1000 -
100

1 -

[1,10[[10,100[[100 1000[>=1000
outgoing links

pages

Figure 3.12: Distribution of the number of outgoing links per page.

66

cpan.dei.uc.pt/modules/00modlist.long.html
ftp.ist.utl.pt/pub/rfc/
homepage.oninet.pt/095mad/bookmarks_on_mypage.html
www.fis.uc.pt/bbsoft/bbhtm/mnusbib3.htm
cpan.dei.uc.pt/authors/00whois.html
www.fba.ul.pt/links4.html
boa.oa.pt/bbsoft2/bbhtm/mnusbib3.htm
www.esec-canecas.rcts.pt/Educacao/Escolas.htm
pisco.cii.fc.ul.pt/nobre/hyt/bookmarks.html
www.fpce.uc.pt/pessoais/rpaixao/9.htm

3.3 A model of the Portuguese Web

Rank | Nr. of incoming Content URL
links
1 6 862 www.fcen.pt/
2 754 clanhosted.clix.pt
3 688 WWW.Sapo.pt
4 606 www.publico.pt
) 522 www.infocid.pt
6 448 paginasbrancas.pt
7 423 www.dn.pt
8 413 WWW.Sapo.pt/
9 361 security.vianetworks.pt
10 350 www.uminho.pt

Table 3.8: The 10 URLs with highest number of incoming links.

is not surprising, since most links in pages are navigational (Koehler, 2002).
Nonetheless, there are also pages rich in outgoing links (see Table 3.7). The
obtained results showed that 66% of the links in Portuguese pages did not point
to another Portuguese site. This measure was made under the assumption that
all the URLs hosted outside the .PT domain for which the language could not
be determined were considered as being outside the Portuguese Web. 40% of the
outgoing links pointed to home pages.

Figure 3.13 shows that 3 189 710 Portuguese contents (89%), were not refer-
enced by a link originated in another Portuguese site. As observed on the global

web, most links tend to point to a small set of pages (Kleinberg, 1999).

3.3.3.3 Content popularity

The importance of a content can be determined through the analysis of the web
graph. In order to achieve a meaningful ranking of the relative importance of

contents, links to duplicates and HTTP redirects were handled differently:

e Links to duplicates cause the splitting of the number of links to a content
among the several URLs that refer it. In the presence of duplicated contents,
the content with the smallest URL was elected as the common reference.
Then, the links to duplicates were removed from the web graph and the

correspondent links were re-targeted to the URL used as common reference;

67

www.fccn.pt/
clanhosted.clix.pt
www.sapo.pt
 www.publico.pt
www.infocid.pt
 paginasbrancas.pt
 www.dn.pt
 www.sapo.pt/
 security.vianetworks.pt
 www.uminho.pt

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

10000000 -+

1000000 +

100000 -

10000

1000

contents

100 -
10 ~

1 T T
0 [1,10[[10,100[[100,1000] >=1000

incoming links

Figure 3.13: Distribution of the number of incoming links per content.

e HTTP redirects are almost invisible to web surfers. Involuntarily, publishers
link to the URL of the redirect instead of the URL of the content. This
causes a split in the number of links between the redirects and the content.
Each redirect was followed until a non-redirect URL was found. Then, the
redirect nodes were replaced in the graph by the correspondent non-redirect
URLs.

Table 3.8 presents the URLs of the 10 contents that received most incoming
links after the above modifications were applied.

Despite the efforts to eliminate pathological situations in the analyzed graph,
there were still anomalies on the most ranked content lists. In positions 3 and 8 of
Table 3.8, the number of incoming links was spread among two different URLs,
although they both refer to the same content. The problem was that the two
URLs were identified by their string representation and between the crawl of the
first and the second URL, the content referenced by them changed. Sometimes
the change on the content is very small. In the second example, the change was

just a link to an advertisement.

68

3.3 A model of the Portuguese Web

sites

Nr. incoming Site
links

1 7109 www.fcen.pt
2 1881 br.weather.com
3 1617 images.clix.pt
4 1601 WWW.Sapo.pt
) 1481 www.clinicaviva.pt
6 794 www.depp.msst.gov.pt
7 o www.infocid.pt
8 721 www.fct.mct.pt
9 652 ultimahora.publico.pt
10 615 www.miau.pt

Table 3.9: The 10 sites that received most incoming links.

100000

10000 -

1000 -
100 - I
10
1 -

[1,10[[10,100[[100 1000[>=1000

incoming links

Figure 3.14: Distribution of the number of incoming links per site.

69

www.fccn.pt
br.weather.com
images.clix.pt
www.sapo.pt
www.clinicaviva.pt
www.depp.msst.gov.pt
www.infocid.pt
www.fct.mct.pt
ultimahora.publico.pt
www.miau.pt

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

Nr. users Site
1 779 000 WWW.Sapo.pt
2 580 000 www.microsoft.com
3 560 000 pesquisa.sapo.pt
4 548 000 loginnet.passport.com
5 540 000 www.clix.pt
6 538 000 www.google.pt
7 480 000 Www.geocities.com
8 477 000 login.passport.net
9 471 000 www.terravista.pt
10 463 000 www.iol.pt
11 408 000 windowsupdate.microsoft.com
12 405 000 v4.windowsupdate.microsoft.com
13 380 000 WWW.MSN . com
14 311 000 pesquisa.clix.pt
15 290 000 ww2.hpg.ig.com.br
16 247 000 webmail.iol.pt
17 244 000 WWw.mytmn.pt
18 227 000 webmail.sapo.pt
19 224 000 www.aeiou.pt
20 223 000 Www.google. com
21 219 000 www.cidadebcp.pt
22 215 000 planeta.clix.pt
23 203 000 www.yahoo.com
24 202 000 webmail.clix.pt
25 193 000 caixadirecta.cgd.pt
26 191 000 netcabo.sapo.pt
27 189 000 dossieriraque.clix.pt
28 185 000 tsf.sapo.pt
29 185 000 www.cgd.pt
30 182 000 login.passport.com
31 181 000 WWW.msn.com.br
32 180 000 bandalarga.netcabo.pt
33 177 000 www.dgci.gov.pt
34 173 000 www.abola.pt
35 171 000 auth.clix.pt
36 165 000 pwp.netcabo.pt
37 159 000 www.tvi.iol.pt
38 156 000 netbi.sapo.pt
39 156 000 www.record.pt
40 156 000 download.com.com

Table 3.10: The 40 most accessed sites by Portuguese users between 2002 and
2003 (source: Marktest LDA).

70

www.sapo.pt
www.microsoft.com
pesquisa.sapo.pt
loginnet.passport.com
www.clix.pt
www.google.pt
www.geocities.com
login.passport.net
www.terravista.pt
www.iol.pt
windowsupdate.microsoft.com
v4.windowsupdate.microsoft.com
www.msn.com
pesquisa.clix.pt
ww2.hpg.ig.com.br
webmail.iol.pt
www.mytmn.pt
webmail.sapo.pt
www.aeiou.pt
www.google.com
www.cidadebcp.pt
planeta.clix.pt
www.yahoo.com
webmail.clix.pt
caixadirecta.cgd.pt
netcabo.sapo.pt
dossieriraque.clix.pt
tsf.sapo.pt
www.cgd.pt
login.passport.com
www.msn.com.br
bandalarga.netcabo.pt
www.dgci.gov.pt
www.abola.pt
auth.clix.pt
pwp.netcabo.pt
www.tvi.iol.pt
netbi.sapo.pt
 www.record.pt
download.com.com

3.3 A model of the Portuguese Web

3.3.3.4 Site popularity

The importance of a site can be derived from the total number of incoming links
that it receives from other sites (Wu & Aberer, 2004). An highly ranked site
might not host highly ranked contents. For instance, some online newspapers
receive a large number of incoming links to many distinct news pages, but as
news are interesting and are in many cases available for only a short period of
time, they never get to be highly ranked contents.

Broder et al. (2000) analyzed the graph structure of the web through two
large crawls of 200 million pages each. They considered each page as a node and
each hypertext link as an edge on the graph. They found that 91% of the pages
were reachable from one another by following either forward or backward links
after computing an algorithm that finds weak components in the graph.

The results obtained for the Portuguese Web were obtained through a different
methodology, because only the links between distinct sites were considered and
weak components were not detected in the graph. KEach Portuguese site is a
node and each link between contents on two different sites an edge. 73% of the
sites were connected to another site, by following links in both directions. This
result contrasts with the one obtained by Broder et al. (2000), showing that the
connectivity of the graph may decrease on a smaller portion of the web, such as
the Portuguese Web.

Figure 3.14 presents the distribution of the number of incoming links per site.
Considering the graph directed, with links followed only in their real direction,
only 45% of the sites were reachable from another site, which leaves a majority
of sites (55%) that are never linked (orphan sites). These sites were found by the
crawler because they were part of the seeds.

Table 3.9 presents the 10 Portuguese sites that received most incoming links.
These results were compared with a list of 495 selected sites, accessed from the
homes of a panel of Portuguese users, during the period when the crawl was per-
formed (Marktest, 2003). 50% of all the sites accessed by the panel of Portuguese
users were part of the Portuguese Web. There is correlation of 0.527 between
the number of users and links to the Portuguese sites. This shows that the most

linked sites are also usually more visited by the users of this community web.

71

3. CHARACTERIZING THE STRUCTURAL PROPERTIES OF A
NATIONAL WEB

Table 3.10 presents the 40 sites that received most distinct users. The ma-
jority (27) of these popular sites are hosted under the .PT domain. There was a
high number of accesses to sites that are automatically contacted by tools. For
instance, when users type URLs of sites that are not found, Internet Explorer au-
tomatically redirects their requests to auto.search.msn.com by default. These
sites appear as overrated in usage statistics.

At first sight, it is surprising that the site www.fccn.pt, which occupies the
first position in Table 3.9, is not present in the list of the 495 sites accessed by the
users. A deeper analysis revealed that 96% of the links to the FCCN (National
Foundation for Scientific Computing) site were originated on sites hosted under
the .RCTS.PT domain and almost all of them (99%) pointed to the FCCN home
page (www.fccn.pt/). The RCTS network (Network for Science, Technology
and Society) is also managed by FCCN. It is composed by over 11 000 sites
from several public institutions, specially schools, hosted under the .RCTS.PT
domain. FCCN automatically generated a site on the RCTS network for every
school in the country, initially composed by a single page containing its address,
e-mail and, a link to www.fccn.pt/. The content of these sites was supposed to
be replaced by contents produced by the schools, but in most cases that didn’t
happen. As a result, the default site prevailed, generating a high number of links
to the FCCN site from these sites.

3.4 Conclusions

This chapter presented a study on the characterization of the sites, contents and
link structure of the Portuguese Web. It proposed a selection criteria that covers
this web with high precision and is simultaneously easy to configure as a crawling
policy.

This chapter proposed solutions for the situations on the web that may bias
web statistics. This shows that a web characterization depends on the used
crawling technology and configuration. The interpretation of statistics of data
gathered from a national web is beyond a mathematical analysis. It requires

knowledge about web technology and social reality of a national community.

72

auto.search.msn.com
www.fccn.pt
www.fccn.pt/
www.fccn.pt/

3.4 Conclusions

Studies like this are interesting to others who need to characterize commu-
nity webs and may help in the design of software systems that operate over the
web. Web archivers can better estimate necessary resources and delimit portions
interesting for archival. Web proxies can be more accurately configured by ad-
ministrators. Crawlers can be improved through suitable architectures and con-
figurations. Finally, web search engines that index data from optimized crawlers
can improve their coverage of the web leading to better search results.

A question that was not completely answered is how different is the Portuguese
Web from the global web. The obtained results suggest that the Portuguese Web
has similarities and differences with other portions of the web. However, these
differences may have been caused by the distinct research methodologies used in
previous works, which often are not detailed enough. Moreover, because the web
is permanently evolving, the differences may result from samples being gathered
in different periods of time. One way to answer this question would be to crawl
the Portuguese Web and the general web simultaneously using the same crawler
configuration. Unfortunately, the resources to execute such an experiment were
not available during the period of this research.

Although the characterization of the Portuguese Web, may not be represen-
tative of other web portions, it is representative of the data that would populate
a WWh of the Portuguese Web because the extraction stage of the web data
integration process was reproduced on the sampling methodology.

One snapshot is not enough to model all the characteristics of the web. Some
of them must be analyzed through periodic sampling. The next chapter discusses
characteristics of the Portuguese Web derived from several snapshots gathered

for three years.

73

Chapter 4

Web data persistence

The information available on the web is permanently changing. Despite the
ephemeral nature of web data, there is persistent information that prevails for
long periods of time. Models of web data persistence are essential tools for the
design of efficient Web Warehouses that repeatedly collect and process web data.

The lack of models and up-to-date characterizations of the web frequently
postpone important design decisions for a late development stage. For instance,
a Web Warehouse (WWh) could be designed to use a delta storage mechanism
in order to save on storage space (Gomes et al., 2006b). However, its efficiency
would be jeopardized in practice because delta storage mechanisms are built on
the assumption of persistency of object identifiers and do not cope with web
contents identified by short life URLs.

This chapter models the persistence of information on the web using two
metrics: the persistence of URLs and the persistence of contents. These metrics
cannot be modelled through the analysis of a single snapshot of the web. So,
several snapshots of a national web (the Portuguese Web) gathered for three
years were studied. Besides these models, the study provides updated statistics
on technological and structural characteristics of the web, and a characterization
of persistent information.

This chapter is organized as follows: the next section describes the experi-
mental setup used in this research work. Section 4.2 models the persistence of

URLs and Section 4.3 the persistence of contents. Section 4.4 analyzes the re-

75

4. WEB DATA PERSISTENCE

Crawl | Median Size | Nr. of URLs | Nr. of sites

id. date (GB) (millions)

1 2002-11-06 44 1.2 19 721
2 2003-04-07 | 129 3.5 51 208
3 2003-12-20 120 3.3 66 370
4 2004-07-06 170 4.4 75 367
5 2005-04-12 | 259 9.4 83 925
6 2005-05-28 | 212 7.3 81 294
7 2005-06-18 | 288 10 94 393
8 2005-07-21 299 10.2 106 841

Table 4.1: Statistics of the crawls in the data set.

lation between these two metrics and Section 4.5 draws the conclusions of this

evaluation.

4.1 Experimental setup

Web data persistence was modelled through the analysis of eight crawls of the
Portuguese Web gathered between 2002 and 2005. Table 4.1 presents the median
date of harvesting of the pages, the total size of the downloaded contents, the
number of URLs and sites successfully visited.

Each new harvest of a crawl was seeded with the home pages of the sites
successfully harvested in the previous one. The crawler iteratively downloaded
and followed links to URLs, visiting at most once each one of them. Ideally, the
crawls should be successively larger, tracking web growth. However, Crawl 6 was
stopped before it was finished due to hardware problems. The pairs of crawls
that did not present an increasing number of contents were excluded from the
analysis.

Robustness measures against hazardous situations for harvesting, such as spi-
der traps, were imposed. The crawler harvested at most 5 000 URLs per site,
following links from the seeds until a maximum depth of five in a breadth-first
mode. The content sizes were limited to 2 MB and had to be downloaded within
one minute. The length of the URLs was limited to a maximum of 200 charac-

ters. The crawls included contents from several media types convertible to text.

76

4.2 URL persistence

y = 0.5518e%091%
R? = 0.9063

(]

Q

>
|

URLs
al
Q
>

0% T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000
age (days)

Figure 4.1: Lifetime of URLs.

97% of the contents were HTML pages, which is not surprising since this is the
dominant textual format on the web (Heydon & Najork, 1999).

4.2 URL persistence

The URLs are the identifiers of the resources available on the web and the basis
of its structure. Hence, a WWh must be designed to manage URLs efficiently. A
model for predicting the lifetime of URLs enables the definition of data structures

and algorithms to manage them at an early stage of the system’s development.

4.2.1 Lifetime of URLs

There are several situations that lead to the bulk disappearance of URLs: web-
masters migrate their servers to different technological platforms, entire sites are
shut down and session identifiers generate new URLs for each visit.

An URL was considered persistent if the referenced content was successfully
downloaded in two or more crawls, independently from content changes. The
URLs that were not linked from any page could not be found by the crawler
and would hardly be found by a web user through navigation. Thus, they were

considered dead.

7

4. WEB DATA PERSISTENCE

100% -
80% - I I
3 O HTTP error
0f |
% 60% O Operational error
R 40% - B Dead site
()
© OURL replaced
20% -
0% T T T T T T 1

33 54 100 380 579 836 988

interval (days)

Figure 4.2: Reasons for URL death.

Figure 4.1 shows the relation between the percentage of persistent URLs and
their age. The age for a persistent URL found in each pair of crawls is given
by the difference in days between the median dates of the crawls. For instance,
Crawl 1 was executed in November 2002 and Crawl 3 was executed in December
2003. Hence, the URLs of Crawl 1 that persisted until Crawl 3 were 409 days
old and 24% of these URLs persisted between the two crawls. Most URLs have
short lives and the death rate is higher in the first months. However, a minority of
URLs persists for long periods of time. The lifetime of URLSs follows a exponential
function trend line with an R-squared value of 0.9063. The function estimates
the probability of an URL being available given its age. The half-life of URLs
is the time that it takes to 50% of the URLs in a data set to die. The obtained
results showed that the half-life of URLs is 60 days.

A previously proposed model to estimate the frequency of change of pages
assumed that URLs persisted in time as identifers (Cho & Garcia-Molina, 2003).
The model for estimating URL persistence presented in this section complements

that work by estimating the time span under which the assumption is valid.

4.2.1.1 URL death

An URL was considered dead if it was not referencing a content in the last crawl

(8", but was successfully harvested previously. A site was considered dead if it

78

4.2 URL persistence

did not provide at least one content.

Figure 4.2 presents the main reasons found for URL death. The zz axis repre-
sents the time elapsed in days between the pairs of crawls analyzed. Considering
an interval of 54 days between crawls. For 78% of the dead URLs, the corre-
sponding site was alive but did not link to them. This suggests that the URLSs
were replaced by new ones. For 21% of the dead URLs, the corresponding sites
were also found dead. The percentage of URL deaths due to site’s disappearance
increased with time.

While harvesting, operational problems like network failures may occur. On
average, only 0.4% of the URLs were considered dead due to these problems,
most of them because the referenced content could not be downloaded within
one minute. URL unavailability identified through HT'TP errors represents on
average 0.8% of the causes of URL death, but these errors become more visible in
shorter intervals, 3.5% of the URLs in Crawl 7 presented HTTP errors in Crawl 8
(33 days of interval). The most common HTTP errors were File Not Found (404),
Internal Server Error (500) and permanent or temporary redirections (301, 302).
Notice that the crawler also visited the target URLs of the redirections. Spinellis
(2003) studied the reasons of death among the URLs cited from research articles
and witnessed similar results.

The obtained results suggest that the main causes of URL death are the
frequent replacement of URLs and site death, independently from the source

of citation.

4.2.1.2 Lifetime of sites

The lifetime of sites was also studied. For each crawl, the percentage of sites
that were still alive in subsequent crawls was identified. The age of a site is the
difference between the dates of the visits to obtain the crawls. Figure 4.3 shows
that over 90% of the sites younger than 100 days were alive, but this percentage
decreased to 30-40% among those older than 700 days.

The half-life of sites is 556 days, which is significantly larger than the half-
life of URLs. Hence, a WWh can be designed to reuse information about a site

although their URLs may disappear. For instance, consider a site that migrates

79

4. WEB DATA PERSISTENCE

y = 0.9589¢ "%
R® = 0.7892

100% -+

90% - *

70%

60% ® \

50% .

40% -| * o & o0

30% | MRS A 4

20% -

10%
0% T T T T T T T T T 1

0 100 200 300 400 500 600 700 800 900 1000

sites

age (days)

Figure 4.3: Lifetime of sites.

to a new content management system, causing the replacement of most of its
URLs. The information kept in a WWh about the site, such as the description
of its content, does not need to be updated, although most of the previous URLSs

of the site no longer reference contents.

4.2.2 Characteristics of persistent URLs

The characteristics of an URL can predict its persistence. Crawl 8 was used as
baseline to characterize persistent URLs in the evaluated data set. The URLs in
the baseline that persisted from previous crawls were identified and their feature
distributions were compared. The age of an URL is the difference in days between
the date of the crawl and the date of the baseline (which is 0 days old).

4.2.2.1 Dynamic URLs

URLs containing embedded parameters are commonly generated on-the-fly by the
referrer page to contain application specific information (e.g. session identifiers).
These URLs are frequently used just once. The URLs containing embedded

parameters are dynamic and the remaining are static (Figure 4.4).

80

4.2 URL persistence

100% -
90% ~
80% +
70% ~

60% - M static
50% - Edynamic
40% ~
30% ~
20% ~
10% ~
0% T T T T T T T 1
0 33 54 100 380 579 836 988

age (days)

URLs

Figure 4.4: Distribution of dynamic URLs.

The URLs were extracted from links in pages, so dynamic URLs resultant
from the input of values in forms were not considered. The first column identified
with age 0 shows that 55% of the URLs in the baseline were dynamic and 45%
were static. The second column presents the distribution of static and dynamic
URLs that persisted from Crawl 7 until the baseline. As the date of the baseline
was 2005-07-21 and the date of Crawl 7 was 2005-06-18, the persistent URLSs
have an age of 33 days. The presence of dynamic URLs decreases smoothly as
they grow older: 46% of the URLs 33 days old were dynamic, but this percentage
decreased to 26% among URLs 988 days old.

The obtained results show that static URLs are more persistent than dynamic

URLs, although there are dynamic URLs that persist for years.

4.2.2.2 URL length

Figure 4.5 presents the relation between the length and the persistence of URLs.
It shows that URLs shorter than 50 characters are more persistent than longer
ones. This observation is consistent with the results presented on the previous
Section, because dynamic URLs were longer (average 77.1 characters) and less
persistent than static URLs (average 49.2 characters). An analysis of a sample
of these URLs revealed that very long URLs tend to be used in poorly designed

sites that are quickly remodelled or deactivated.

81

4. WEB DATA PERSISTENCE

100% -
90%iiiiiiii
80% - {1 m1125,200]
70% - 0 | @]100,125]
@ 60% - — M W]75,100]
S L H A L] || osorms
s | 0]25,50]
0% - |]0,25]
10% -
0% ‘ ‘ -_'_-_'_-_'_-_'_-_1

0 33 54 100 380 579 836 988
age

Figure 4.5: Distribution of URL length (number of characters).

4.2.2.3 Depth

The depth of an URL is the minimum number of links followed from the home
page of the site to the URL. The URLs at lower depths are usually the most
visited. One may hypothesize that they should be more persistent because broken
links are easier to detect. However, Figure 4.6 describes the distribution of the
URLSs per depth and shows that depth did not influence URL persistence.

An analysis of these persistent URLs revealed that they can be found at
different levels of depth according to the structure of the site. There are sites
presenting a deep tree structure, while others have a shallow and wide structure.

So, an URL with depth = 3 may be deep in one site but not in another.

4.2.2.4 Links

Authors use links to reference information related to their publications. The
number of links that an URL receives from external sites represents a metric of
importance, while links internal to the site are navigational.

Figure 4.7 describes the distribution of the URLs that received at least one
link from another site. 98.5% of the URLSs in the baseline did not receive any link.
However, the presence of linked URLs among persistent URLs slightly increased

82

4.3 Lifetime of contents

100% -
80% ~ H5
70% - | H K 04

o 60% - (— -

T 50% - L 03
30% 1 [—~ H1
20% - mo
oo el m W W R

0% -

0 33 54 100 380 579 836
age

Figure 4.6: Distribution of URL depths.

with time. It raised from 1.5% among URLs aged 33 days to 9.6% among URLs
988 days old. There are two possible explanations for this fact. First, persistent
URLs are more likely to accumulate links during their lifetime. Second, the
number of links to an URL increases its measure of popularity in search engines
and the owners of popular URLs take special care in preserving them because of

their commercial value.

4.3 Lifetime of contents

A WWh needs to periodically update the information collected from the web. A
model that determines the lifetime of a content enables measuring the freshness
of the information kept and the schedule of refreshment operations.

Fetterly et al. (2003) observed a set of pages for 11 weeks and observed that
the age of a content is a good predictor of its future persistence. This section
presents a study on content persistence for a longer period of time.

The definition of a boundary for deciding if a content has changed enough
to imply its refreshment from the web is highly subjective. It was assumed
that any change in a page generates a new content to study the persistence of

contents on the web. Contents were identified by comparing their fingerprints

83

4. WEB DATA PERSISTENCE

20% -+
15% -
@ B No inlinks
% 10% - OWwith inlinks
5% -
0% -

0 33 54 100 380 579 836 988
age

Figure 4.7: Distribution of linked URLs.

between crawls, independently from the URLs that referenced them. For each
crawl, the percentage of contents that were still available on the following ones
was computed.

Figure 4.8 summarizes the percentages of persistent contents according to their
age. Just 34% of the contents 33 days old persisted, but 13% of the contents lived
approximately one year. The lifetime of contents matches a logarithmic function
with an R-squared value of 0.8475. This function enables the estimation of the
contents percentage that remain unchanged within a collection of pages given its
age. The half-life of contents is the time that it takes to 50% of the contents in
a data set to change or disappear. The obtained results suggest that the half-
life of contents is two days. Most contents have short lives, but there is a small

percentage that persists for long periods of time.

4.3.1 Characteristics of persistent contents

The characteristics of contents influence their persistence. Modelling persistent
contents enables the design of web warehouses, which may be tuned to the charac-
teristics of the data collections processed. For instance, a model on the persistence
of web data can be used to tune the refresh policy according to the lifetime and
characteristics of the cached information.

This section presents an analysis of five features that characterize persistent

contents. Crawl & was the baseline to derive feature distributions. Each of these

84

4.3 Lifetime of contents

y = 0.2744¢ 700015
R®=0.8475
40% -
35%
30%
25%
20%
15%
10%
50 . o
0% ; ; ; ; ; ; ; ; ;

contents

age (days)

Figure 4.8: Lifetime of contents.

features will now be dissected.

4.3.1.1 Dynamic contents

Dynamic contents are generated on-the-fly when a web server receives a request.
They became popular because they enable the efficient management of instance
data in databases, independently from publishing formats (e.g. online shops).

A WWh can benefit from applying different storage policies for static and
dynamically generated contents gathered from the web. The URLs containing
embedded parameters referenced dynamic contents and the remaining were static.

Figure 4.9 shows that 55% of the contents in the baseline, harvested in July,
2005, were dynamically generated, a figure superior to the 34% witnessed by
Castillo (2004) in May, 2004. The presence of dynamic contents decreased to
32% among contents 33 days old and to less than 9% among contents older than
579 days. The conclusion derived from the results is that in the long term the

static contents are more persistent than dynamic contents.

85

4. WEB DATA PERSISTENCE

100% -
90% -
80% -
70% -
60% W static
45182? i Odynamic

b -
30% -
20% -
10%
0% -

contents

0 33 54 100 380 579 836 988
age (days)

Figure 4.9: Distribution of dynamically generated contents.

Author Date of the sample | %Unknown
Douglis et al. (1997) 1997-7 21%
Brewington & Cybenko (2000) 1999-03 35%
Bent et al. (2004) 2003-07 44%
Baseline 2005-07 64%

Table 4.2: Evolution of the presence of unknown dates in the Last-Modified
header field.

4.3.1.2 Last-Modified date

The Last-Modified date allows to detect if a content has changed since a pre-
vious visit without having to download it. This meta-data can be used to im-
plement refresh policies in web warehouses. For instance, cache entries can be
invalidated based on this information. Webmasters are encouraged to disable
the Last-Modified field for pages that change frequently (The Apache Software
Foundation, 2004). So, the simple presence of this information for a content can
be an indicator of its persistence.

Figure 4.10 shows that the contents with an associated Last-modified date
are significantly more persistent than those with an unknown date of last mod-

ification. Web servers returned unknown values for 64% of the contents in the

86

4.3 Lifetime of contents

100% -
80%
60% - B Known
40% - O Unknown

contents

20% ~
0% -

0 33 54 100 380 579 836 988
age (days)

Figure 4.10: Distribution of contents with known Last-Modified dates.

AgeCrawls
~ " ™
AgelL-M
4 A N

crawll Last-Modified crawl2
date

\ 4

Figure 4.11: Content age calculated through Last-Modified and crawl dates.

baseline. Table 4.2 presents the results obtained in previous works and shows
that the usage of the Last-modified header field tends to decrease.

Web warehouses should not rely blindly on the Last-Modified date because it
can provide erroneous values. The web server’s clock may not be correctly set or
the file date may have been updated with no associated change to its content. The
ages of the contents derived from the Last-Modified header field were compared
with the ages calculated from the dates of harvest to measure the presence of
Last-Modified dates that underestimated the longevity of contents on the web
(see Figure 4.11).

The line connecting the squares in Figure 4.12 shows that the number of con-

tents older than the Last-Modified date increased with age. One reason for this

87

4. WEB DATA PERSISTENCE

30% -
25% -
Older than last
o 20% - modified
5
= 15%
= 0 —e—Older than last
S 10% modified with the
same URL
5% -
0% % T T T T T T 1
0 33 54 100 380 579 836 988

age (days)

Figure 4.12: Contents that present underestimated ages due to erroneous
Last-Modified dates.

result might be that older contents are more liable to experience site reorgani-
zations that move them to different locations and update timestamps without
causing changes in the contents. These operations commonly cause changes in
the URLs. Hence, the ages were recomputed for the contents that maintained
the same URL (line with triangles) and the number of erroneous Last-Modified
dates dropped significantly for contents older than 100 days.

The obtained results show that contents with an associated Last-Modified date
are more persistent. The presence of inaccurate Last-Modified dates increases
among elder contents, but it is less visible among contents that maintain the
same URL. Hence, a WWh should be designed assuming that the contents with
a known Last-Modified date are more persistent, but the supplied date is not a

reliable source of information for the elder contents.

4.3.1.3 Content length

Figure 4.13 presents the size distribution of contents. The presence of small
contents increased with age, 27% of the contents in the baseline were smaller
than 10 KB, but this percentage increased to 74% among the contents 988 days
old.

88

4.3 Lifetime of contents

100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -

0% -

[1]100,2000]
[1]10,100]
W]1,10]
m]0,1]

contents

0 33 54 100 380 579 836 988
age (days)

Figure 4.13: Distribution of content size (KB).

The obtained results show that small contents are more persistent than bigger
ones. This conclusion is consistent with the observation by Fetterly et al. (2003)

that large pages change more often than smaller ones.

4.3.1.4 Depth

The contents kept at low depths are the most reachable. Empirically, they should
change often to include new advertisements or navigational links within the site.
The contents kept deep in the sites are frequently archives of persistent informa-
tion.

Figure 4.14 shows that the depth distribution is maintained regardless of the
contents’ age. Some sites change their contents frequently (e.g. online auctions),
while others keep them unchanged (e.g. online digital libraries), regardless of
depth. Thus, the obtained results show that depth is not a predictor of content

persistence.

4.3.1.5 Site size

The size of a site is the number of contents that it hosts. One may argue that

only large sites, such as digital archives, maintain contents online for long periods

89

4. WEB DATA PERSISTENCE

100% -
90% -
80% -
" 70% -
2 60% -
g 50% -
8 40%
30% -
20% -
10% -
0%
0 33 54 100 380 579 836
age (days)
Figure 4.14: Distribution of content depth.
100% -~
90% -~
80% -
mionsin
o 60% - 1100,1000]
g 50% - El]10,100]
? 40% A H]1,10]
30% - 01
20% -+
10% -+
0% T T T T T T T 1
0 33 54 100 380 579 836 988

age (days)

Figure 4.15: Distribution of site size.

of time. In this case, there would be a prevalence of large sites among persistent

contents.

Figure 4.15 describes the distribution of the site sizes. The sites that hosted a
single content were mainly home pages of sites under construction that were never
finished. The percentage of sites that hold more than 100 persistent contents
tends to slightly decrease with time but the general distribution of the site sizes
does not significantly change. The conclusion is that the distribution of the

number of persistent contents per site is similar to the one found on a snapshot

of the web.

90

4.4 Relation between URL and content persistence

contents

O% T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

age (days)

Figure 4.16: Persistent contents that maintained the same URL.

4.4 Relation between URL and content persistence

Previous work on the study of the evolution of the web focused on the change
of contents under the same URL, assuming that the unavailability of an URL
implied the death of the referenced content (Cho & Garcia-Molina, 2003; Fetterly
et al., 2003). However, a change of a site’s name modifies all the correspondent
URLs without implying changes on the referenced contents. Lawrence et al.
(2000) witnessed that for almost all invalid URLs found in academic articles
it was possible to locate the information in an alternate location. Figure 4.16
quantifies the presence of persistent contents that maintained the same URL.
Over 90% of the persistent contents younger than 100 days maintained the same
URL. However, this relation tends to decrease as contents grow older, on average
only 58% of the contents older than 700 days maintained the same URL. These
results show that the assumption that the death of an URL implies the death of
the referenced content is inadequate in long-term analysis.

The permanent change of contents on the web may lead to believe that most
URLs reference several different contents during their lifetime.

Figure 4.17 depicts the relation between persistent URLs and persistent con-
tents. 55% of the URLs 33 days old referenced the same content during their

91

4. WEB DATA PERSISTENCE

100%
90%
80% -
70% -
60% - .
50% -
40% - ISR *
30% -
20% -
10%
O% T T T T T T T T T 1

0O 100 200 300 400 500 600 700 800 900 1000

age (days)

URLs

Figure 4.17: Persistent URLs that maintained the content.

lifetime. This percentage does not vary much as URLs grow older. The results

show that persistent URLs tend to reference persistent contents.

4.5 Conclusions

Web data models help on important design decisions in the initial phases of WWh
implementation projects. This chapter presented models for the persistence of
information on the web, analyzing the lifetime of URLs and contents, and the
characteristics of web data that influence them. The persistence of information
on the web was studied through the analysis of a set of 51 million pages harvested
from a national community web. These data differ from those in previous studies,
as it was built from exhaustive harvests of a portion of the web during several
years, regardless of page importance or the selection bias of documents kept by
topic-specific digital libraries.

I believe that a collection generated by exhaustive harvests of a national com-
munity web is representative of the persistence of information on the general
web, because it includes a broad scope of sites that represent distinct genres (e.g.
blogs, news, commercial sites). However, a national community web may differ

from the general web in other aspects, such as language usage.

92

4.5 Conclusions

Author Age URL Model
persistence | estimation

Koehler (2002) 1.9 years 50% 17%

Cho & Garcia-Molina (2000a) | 1 month 70% 60%

Fetterly et al. (2003) 2.8 months 88% 47%

Ntoulas et al. (2004) 1 year 20% 26%
Digital Libs.

Spinellis (2003) 1 year 80% 26%

Markwell & Brooks (2003) 4.7 years 50% 5%

Lawrence et al. (2000) 1 year 7% 26%

Table 4.3: Comparison of URL persistence with the estimation derived from the
obtained model.

Author Age Content Model
persistence | estimation
Brewington & Cybenko (2000) | 100 days 50% 23%
Cho & Garcia-Molina (2000a) 1 day 7% 55%
Fetterly et al. (2003) 7 days 65% 41%
Ntoulas et al. (2004) 1 year 10% 15%

Table 4.4: Comparison of content persistence with the estimation derived from
the obtained model.

The lifetime of URLs and contents follows a exponential distribution. Most
URLs have short lives and the death rate is higher in the first months but there is
a minority that persists for long periods of time. The obtained half-life of URLs
was two months and the main causes of death were the replacement of URLs and
the deactivation of sites. Persistent URLs are static, short and tend to be linked
from other sites and depth did not influence URL persistence.

Table 4.3 shows that the obtained results contrast with previous work and
evidence a quicker decay of URLs. However, they strengthen conclusion from
Koehler (2002) that once a collection has aged sufficiently, it becomes more
durable in time.

The half-life of contents is just two days. The comparison of the obtained
results with previous works suggests that the lifetime of contents is decreasing

(see Table 4.4). Typically, persistent contents are not dynamically generated,

93

4. WEB DATA PERSISTENCE

are small and have an associated Last-Modified date. However, the presence of
contents with known Last-Modified dates has been decreasing in the past years,
which is consistent with the conclusion that the lifetime of contents is decreasing.
Inaccurate Last-Modified dates increased among elder contents but they were less
visible among those that maintained the same URL. Persistent contents were not
related to depth and were not particularly distributed among sites. About half
of the persistent URLSs referenced the same content during their lifetime.

The next chapter discusses how the derived models for the Portuguese Web
influenced the design of the WWh that stores it.

94

Chapter 5

Designing a Web Warehouse

The Web is a powerful source of information, but its potential can only be har-
nessed with applications specialized in aiding web users. However, most of these
applications cannot retrieve information from the web on-the-fly, because it takes
too long to download the data. Pre-fetching the required information and storing
it in a Web Warehouse (WWh) is a possible solution. This approach enables the
reuse of the stored data by several applications and users.

A WWh architecture must be adaptable so it may closely track the evolution of
the web, supporting distinct selection criteria and gathering methods. Meta-data
must ensure the correct interpretation and preservation of the stored data. The
storage space must accommodate the collected data and it should be accessible to
humans and machines, supporting complementary access methods to fulfill the
requirements of distinct usage contexts. These access methods should provide
views on past states of the stored data to enable historical analysis.

This chapter discusses the design of a WWh prototype named Webhouse. The
information harvested from the Portuguese Web and described on the previous
Chapters was integrated in Webhouse while it was being developed to study the
influence of web characteristics in the design of a WWh. Figure 5.1 presents the
high-level architecture of Webhouse. There are two main components: the Vidva
Negra crawler (VN) is responsible for extracting and loading contents into the
Versus repository. The Versus repository provides high performance structured

access to meta-data and extensible storage space to keep contents.

95

5. DESIGNING A WEB WAREHOUSE

Webhouse
j> Vidva Negra :> Versus j> C_IienF
crawler repository applications

Figure 5.1: Webhouse architecture.

Versus repository

Contents Manager Catalog

Application Application Application Application Application
thread thread thread thread thread

Figure 5.2: Versus architecture.

The focus of the chapter is on the design of the Webhouse prototype, dis-
cussing the extraction, loading and management of web data. It is organized as
follows: Section 5.1 describes the Versus repository. It discusses the management
of contents, addressing in particular the problem of duplication among web collec-
tions. It also presents the data and operational models that support the system,
enabling the quick development of distributed client applications. Section 5.2
describes the design of the VN crawler. Section 5.3 discusses how some situations
on the web can degrade the performance of a WWh. Finally, Section 5.4 presents

the main conclusions derived from the development and operation of Webhouse.

5.1 The Versus repository

Figure 5.2 represents the Versus repository architecture. It is composed by the
Content Manager and the Catalog. The Content Manager provides storage space
for the contents (Gomes et al., 2006b). The Catalog provides high performance

access to structured meta-data. It keeps information about each content, such

96

5.1 The Versus repository

as the date when it was collected or the reference to the location where it was

stored in the Content Manager.

5.1.1 Content Manager

Web warehousing involves a large amount of data and claims for storage systems
able to address the specific characteristics of web collections. The duplication
of contents is prevalent in web collections. It is difficult to avoid downloading
duplicates during the crawl of a large set of contents, because they are commonly
referenced by distinct and apparently unrelated URLs (Bharat & Broder, 1999;
Kelly & Mogul, 2002; Mogul, 1999a). Plus, the contents kept by a WWh have
an additional number of duplicates, because it is built incrementally and many
contents remain unchanged over time, being repeatedly stored (see Chapter 4).
The elimination of duplicates at storage level after a crawl is terminated can be
executed in batch by finding and deleting duplicates. However, disk 1/O opera-
tions are expensive. First, every content is written to disk during the crawl, then
read for comparison with others to identify duplicates and finally deleted, if it is
a duplicate. Considering that a WWh may hold billions of contents and new ones
are frequently being loaded, this approach can be prohibitively time consuming.
The identification of duplicates is an appealing feature to identify replicas or save
on storage space, but it must not jeopardize the WWh performance.

This section describes the design of the Versus Content Manager. It discusses
the elimination of exact and partial duplicates and presents the mechanism im-

plemented to detect if a content is a duplicate before it is stored on disk.

5.1.1.1 Elimination of partial duplicates in a WWh

Delta storage or encoding, is a technique used to save space that consists on
storing only the difference from a previous version of a content (MacDonald,
1999). There are pages that suffer only minor changes, such as the number of
visitors received or the current date. Delta storage enables storing only the part of
the content that has changed, eliminating partial duplicates. Versioning systems,
such as CVS (Berliner, 1990), assume that objects change in time maintaining a

descendence tree under an unique identifier (file name). However, duplication of

97

5. DESIGNING A WEB WAREHOUSE

pages referenced by different identifiers (URLs) is prevalent on the web and using
delta encoding to store them causes continuous duplication in independent trees.
Plus, each tree holds few versions of a content, because URLs are highly transient
(see Chapter 4). A WWh may need to preserve contents for long periods of time.

Delta storage also raises preservation issues, because the retrieval of a content
kept in delta format must be rebuilt by traversing the descendence tree. These
algorithms are software dependent and a corruption on the tree may turn the sub-
sequent versions of the content inaccessible. Moreover, delta storage algorithms
can only process a limited set of content formats. A delta storage algorithm that
processes an HTML file may not be effective when applied to a Macromedia Flash
movie, so it is highly dependent on technological changes of the formats used for
web publishing. Delta storage imposes expensive comparisons to detect partial
duplications between a content in the descendence tree and the content to store.
These comparisons executed while contents are being intensively loaded could
originate a serious bottleneck in a WWh.

The elimination of partial duplicates to save storage space was analyzed in
two studies by You & Karamanolis (2004) and Denchy & Hsu (2003). In the
first study the authors compared intra-file compression against inter-file com-
pression using delta encoding and data chunking. These techniques are used
to save storage space within a set of contents by eliminating partial duplicates.
However, they require additional meta-data to reconstruct the original contents,
which may become a preservation problem if the meta-data is lost. The authors
also evaluated several techniques with distinct data sets and concluded that none
of them presented optimal results for all data sets. For the data set containing
pages, compressing each page independently causes just an increase of 4% over
the best result presented (using delta encoding).

In the second study, Denehy & Hsu (2003) evaluated different methods for
detecting partial duplicates and proposed a system that stores unique blocks of
data with a configurable replication level. The evaluations were mainly ran over
an email corpus. Although emails contain attachments of formats commonly
found on the web, inferring that the best method (sliding window) would be as

efficient in a web corpus would be arguable.

98

5.1 The Versus repository

block

webstore version [u

compression algorithr]

'
h

- 1 header

content size 1

'
reference counter |/

'
\ data

content .
1 containell
'

Figure 5.3: Storage structure of a volume: a tree holding blocks on the leafs.

Both studies suggested that eliminating partial duplicates in distributed sys-
tems would raise new problems. However, web warehouses require distributed
storage systems to cope with the large amounts of web data.

In conclusion, eliminating partial duplicates in a WWh repository is not rec-
ommended because the mechanisms for eliminating them at the storage level
cannot be efficiently applied in large-scale distributed storage systems. Never-
theless, eliminating partial duplicates could be useful to save space while storing
small collections of contents harvested from the web within short intervals of
time. Given the heterogeneity of the content formats found on the web, a WWh
repository should also support independent compression algorithms according to

the content’s format.

5.1.1.2 Data model

The data model of the Webhouse Content Manager relies on three main classes:
instance, volume and block. The instance class provides a centralized view of a
storage space composed of volumes containing blocks. Each block keeps a con-
tent and related operational meta-data. The signature is the number obtained
from applying a fingerprinting algorithm to the content. A contentkey contains
the signature of the content and the volume where it was stored. A block holds
an unique content within the volume. It is composed by a header and a data
container (see Figure 5.3). The data container keeps the content. The header

contains information about the software version, the content’s original size in

99

5. DESIGNING A WEB WAREHOUSE

bytes and a reference counter that keeps track of the difference between the stor-
age and delete requests performed on the content, allowing independent clients
to share the same instance without interfering with each other. The header also
specifies the algorithm used to compress the content, enabling the coexistence
of several compression types within the volume and the application of suitable
algorithms according to the content’s format. The storage structure of a volume
is a tree containing blocks on its leafs. Figure 5.3 illustrates a storage structure
with depth = 3. The nodes within each level of depth are identified by num-
bers represented in hexadecimal format from 0 to FF. The tree depth can change
within the volumes that compose an instance, according to the storage capacity
of the node.

5.1.1.3 An algorithm for eliminating duplicates

The location of a block within the volume tree is obtained by applying a function
called sig2location to the content’s signature. Assuming that the signature of
a content is unique, two contents have the same location within a volume if
they are duplicates. Consider a volume tree with depth n and a signature with
m bytes of length. Sig2location uses the (n - 1) most significant bytes in the
signature to identify the path to follow in the volume tree. The 7" byte of
the signature identifies the tree node with depth ¢. The remaining bytes of the
signature (m-n-1) identify the block name on the leaf of the tree. For instance,
considering a volume tree with depth 3, the block holding a content with signature
ADEE2232AF3A4355 would be found in the tree by following the nodes AD, EE
and leaf 2232AF3A4355.

The detection of duplicates is performed during the storage of each content,
ensuring that each distinct content is stored in a single block within the instance.
When a client requests the storage of a content, the system performs a sequence
of tasks:

1. Generate a signature s for the content;

2. Apply sig2location to the signature and obtain the location [of the corre-

sponding block;

100

5.1 The Versus repository

3. Search for a block in location [within the n volumes that compose the

instance, multicasting requests to the volumes;

4. If a block is found in volume, the content is considered to be a duplicate
and its reference counter is incremented. Otherwise, the content is stored

in a new block with location [in the volume identified by s mod n;

5. Finally, a contentkey referencing the block is returned to the client.

The mod-based policy used to determine the volume where to store a con-
tent divides the load equally among the volumes. However, clients can define
the volume where to store each content implementing alternative load-balancing
policies. This way, in the presence of heterogeneous nodes, clients can impose
higher workloads on those with higher throughput.

The elimination of duplicates at storage level is transparent to the clients
because they just order the storage of a content and receive the correspondent
contentkey, independently from if the content was identified as a duplicate.

A client retrieves a content by supplying the corresponding contentkey. The
Content Manager decomposes the contentkey, identifies the signature of the con-
tent and the volume that hosts the correspondent block. The location of the block
in the volume is obtained by applying sig2location to the signature. Finally, the
content stored in the block is decompressed using the algorithm specified in the
block’s header, and the content is returned to the client.

The delete operation is also invoked with a contentkey as argument. The
location of the block is executed by following the same process as for the retrieve
operation. If the reference counter contained in the header of the block is set to
one, the block is deleted. Otherwise, the reference counter is decremented. Since
the location of the content is determined by the contentkey, the volume where the
content is stored is directly accessed, both for the retrieve and delete operations.
Therefore, the performance of these operations is independent from the number

of volumes that compose an instance.

101

5. DESIGNING A WEB WAREHOUSE

5.1.1.4 Fake duplicates

Theoretically, if two contents have the same signature they are duplicates. How-
ever, fingerprinting algorithms present a small probability of collision that causes
the generation of the same signature for two different contents (Rabin, 1979).
Relying exclusively on the comparison of signatures to detect duplicates within
a large collection of contents, could cause some contents to be wrongly identified
as duplicates and not stored. These situations are called fake duplicates.

The probability of occurrence of collisions depends on the fingerprinting algo-
rithm, but it is extremely small in most cases (less than one in one million). On
the other hand, a WWh holds millions of contents so a fake duplicate may occur.
The remote possibility of loosing a content is acceptable for most people, but it
could be disquieting for a librarian in charge of preserving an unique content of
great historical importance. I believe that the probability of loosing a content due
to a disk error or bug on the underlying software (e.g imported software libraries
or hardware drivers) is higher than the probability of fingerprint collisions. Nev-
ertheless, the Content Manager supports three modes for the store operation to
fulfill the requirements of applications that may need absolute certainty that fake
duplicates do not occur: force-new, reqular and compare.

When using the force-new mode, the elimination of duplicates is switched off
and a new block is created to store each content. This semantic is useful if one
knows that the collection does not contain duplicates.

The regular mode (default) detects a collision if two contents have the same
signature, but different sizes. In this case, an overflow block is created to keep
the content. However, the success of this heuristic depends on the distribution
of the content sizes and collisions will not be detected among contents with the
same size. The distribution of sizes for a sample of 3.2 million Portuguese pages
revealed that the probability of two random pages having the most frequent size
is 4.15 x 107%. Assuming that the probability of two pages having the same size
and the probability of fingerprint collision between them are independent events,
the obtained results indicate that the comparison of sizes can substantially reduce
the occurrence of fake duplicates without requiring longer fingerprint signatures

or additional meta-data.

102

5.1 The Versus repository

The compare mode relies on size and bytewise comparison of the contents to
detect collisions. If two contents have the same signature but different sizes, or
have the same size but are not byte equal, a collision is detected. Fake duplicates

never occur when using this store mode.

5.1.1.5 Content Manager architecture

The Versus Content Manager presents a distributed architecture composed by a
set of autonomous nodes that provide disk space with no central point of coordi-
nation, extending storage capacity by adding new nodes without imposing major
changes in the system. Although network file systems also provide distributed
access to data, they are executed at operating system kernel level and require ad-
ministrative privileges to be installed and operated (Rodeh & Teperman, 2003).
On its turn, the Content Manager is platform independent and runs at application
level without imposing changes in the configuration of the underlying operating
system. Peer-to-peer file systems, such as Oceanstore (Rhea et al., 2003), are
designed to manage a large and highly variable set of nodes with small storage
capacity, distributed over wide-area networks (typically the Internet). This raises
specific problems and imposes complex intra-node communication protocols that
guarantee properties such as security, anonymity or fault tolerance that unneces-
sarily limit throughput on controlled networks. An experiment performed by the
authors of Oceanstore showed that it is on average 8.3 times slower than NFS
(Callaghan et al., 1995) on a local-area network (LAN).

The Versus Content Manager has a different scope. It assumes that nodes
have large storage capacity, are located within the same LAN, and changes on
the configuration of the set of storage nodes are unfrequent. The collections
managed by the Content Manager contain millions of contents with identical
probabilities of being read; therefore, caching mechanisms are not effective. The
design assumes that all the nodes have similar distance costs to the clients and
there are no malicious clients. The system tolerates faults of storage nodes, but it
does not provide automatic recovery and full availability of the contents kept in
the faulty nodes. However, the Content Manager provides methods that enable

the implementation of replication policies within an instance.

103

5. DESIGNING A WEB WAREHOUSE

(client)—l connectorl

library

Client

LAN

Storage nodes

silj=
(e
0L

Figure 5.4: Architecture of the Versus Content Manager.

Figure 5.4 depicts the architecture of the Content Manager. An instance is
composed by a thin middleware [zbrary, the connector object and the volume
servers. Clients access an instance through a connector object that keeps refer-
ences to the volumes that compose the instance. A change in the composition
of the instance, such as the addition of a new volume, implies an update of the
connector. Each volume server manages the requests and executes the correspon-
dent low-level operations to access the contents. The contents are transmitted
between the library and the servers in a compressed format to reduce network

traffic and data processing on the server.

5.1.1.6 Implementation

The storage structure of a volume was implemented as a directory tree over
the filesystem where the blocks are files residing at the leaf directories. The
block header is written in ASCII format so that it can be easily interpreted,
enabling access to the content kept in the block independently from the Webstore
software. A 64-bit implementation of Rabin’s fingerprinting algorithm was used
to generate the content signatures (Rabin, 1979). The Content Manager supports
Zlib as the built-in compression method, but other compression algorithms can
be included. This way, contents can be compressed using adequate algorithms
and accommodate new formats. The connector object was implemented as an

XML file. The library and the volume servers were written in Java using JDK

104

5.1 The Versus repository

Source
+source: String
/N1
*
. L - . Prgpgrty
Layer Version *key: String

+creationDate: Date T +value: String

1 1.7

Content Facet

+contentKey: String| |+contentKey: String

Figure 5.5: Versus Content Manager data model.

1.4.2 (6 132 lines of code). The communication between them is through Berkeley
sockets. Currently, clients access volume servers in sequence, (a multicast protocol
is not yet implemented). Volume servers are multi-threaded, launching a thread
for handling each request. Volume servers guarantee that each block is accessed

in exclusive mode through internal block access lists.

5.1.2 Catalog

This section describes the data model that supports the Catalog and the oper-
ational model that enables parallel loading and access to the data stored in the

Versus repository.

5.1.2.1 Data model

Figure 5.5 presents the UML class model of the Catalog. This model is generic
to enable its usage for long periods of time independently from the evolution of
web formats. Plus, it also enables the usage of the repository in contexts different
from Web Warehousing. For instance, it can be applied to manage meta-data on
the research articles kept in a Digital Library. However, it is assumed that the

contents are inserted into the repository in bulk loads.

105

5. DESIGNING A WEB WAREHOUSE

The Source class identifies the origin of the content, for example an URL on
the web. Each Version represents a snapshot of the information gathered from
a Source. The Versions that were stored in the repository in the same bulk load
are aggregated in Layers. A Layer represents the time interval from its creation
until the creation of the next one. This way, time is represented in a discrete
fashion within the repository, facilitating the identification of contents that need
to be presented together, such as a page and the embedded images. The Property
class holds property lists containing meta-data related to a Version. The use
of property lists instead of a static meta-data model, enables the incremental
annotation of contents with meta-data items when required in the future. The
Content and Facet classes reference contents stored in the Content Manager. The
former references the contents in their original format and the latter alternative
representations. For instance, a Content is an HTML page that has a Facet that
provides the text contained in it. Facets can also provide storage for current
representations of contents retrieved earlier in obsolete formats. Versus supports
merging the Content, Facets and meta-data of a Version into a single Facet in
a semi-structured format (XML), so that each content stored in the Content
Manager can be independently accessed from the Catalog. There are contents
that are related. For instance, pages have links to other pages. The Reference

class enables the storage of associations of Versions that are related to each other.

5.1.2.2 Operational model

A Versus client application is composed by a set of threads that process data
in parallel. Each application thread does its specific data processing and Versus
is responsible for managing and synchronizing them. The operational model of
Versus was inspired on the model proposed by Campos (2003). It is composed

by three workspaces with different features that keep the contents meta-data:
Archive (AW). Stores meta-data permanently. It keeps version history for the

contents to enable the reconstruction of their earlier views. The AW is an

append-only storage, the data stored cannot be updated or deleted;

106

5.1 The Versus repository

Group (GW). Keeps a temporary view of the meta-data shared by all applica-
tion threads. It enables the synchronization among the application threads

and data cleaning before the archival of new data;

Private (PW). Provides local storage and fast access to data by application
threads. Private workspaces are independent from each other and reside on

the application threads addressing space.

An application thread can be classified in three categories according to the

task it executes:

Loader. Generates or gathers data from an information source and loads it into

Versus;

Processor. Accesses data stored in Versus, processes it and loads the resulting
data;

Reader. Accesses data stored in Versus and does not change it, neither generates

new information.

The data stored is partitioned to enable parallel processing. A Working Unit
(WU) is a data container used to transfer partitions of meta-data across the
workspaces. The Working Units are transferred from one workspace to another
via check-out and check-in operations (Katz, 1990). When a thread checks-out
a WU, the corresponding meta-data is locked in the source workspace and it is
copied to the destination workspace. When the thread finishes the processing
of the WU, it integrates the resulting data into the source workspace (check-in).
The threads that compose an application share the same partitioning function.

There are two classes of Working Units:

Strict. Contain exclusively the Versions that belong to the Working Unit. Strict
Working Units should be used by applications that that do not need to

create new Versions;

Extended. The Extended Working Units may also contain Versions that do not
belong to the WU, named the Ezternal Versions.

107

5. DESIGNING A WEB WAREHOUSE

The check-outs are executed in the same way for Strict and Extended Working
Units. The partitioning function is applied to the source workspace to determine
which Versions belong to the WU, then they are copied to the destiny workspace.

A conflict arises when a thread tries to check-in a Version that was previ-
ously inserted by another thread. Conflicts never occur during the check-in of
Strict Working Units, because the thread acquired exclusive access to all the Ver-
sions belonging to the WU when it executed the check-out operation. Thus, the
check-in can be performed very efficiently, transferring Versions in batch with-
out any further testing. However, conflicts may occur during the check-in of
the External Versions contained in the Extended Working Units. If an External
Version conflicts an existing one, the conflict is automatically resolved under a
First-come First-served policy: the meta-data and content correspondent to the
External Version are discarded. The advantage of using Extended Working Units
is that application threads can work in a completely independent fashion until
the check-in, even if they have to create Versions belonging to other Working
Units.

The partitioning function used to create Working Units is defined according
to the characteristics of data to fulfil the requirements of the applications. For
instance, if each thread of an application needs to process a page plus the pages
it links to, the WU must contain these data. However it must be disjunctive:
one Version belongs to one partition at most. On the other hand, the partition-
ing function must create Working Units with a size adequate to the resources
available to support Versus. Ideally, the Working Units should contain a fixed
amount of meta-data, but this may not be compatible with the requirements
of the applications. Hence, the partitioning function must be carefully chosen to
avoid the creation of partitions with very skewed sizes. Abnormally large Working
Units can exhaust the resources available to support a thread’s PW (e.g. mem-
ory) and originate very long check-in and check-out operations. On the other
hand, extremely small Working Units can overload Versus with synchronization
operations, compromising the performance benefits of using parallel processing,
because synchronization tasks may take longer than the processing of the Working
Units.

108

5.1 The Versus repository

Archive < >
Workspace
“ Resolver)(application
contents w
T
— T

M —
Grou V\'\m
P eta-data

Workspace
Content - application
Manager §> i\>
1 M
Private ~_~ S5 —meta-data
4L

D
thread thread

Figure 5.6: Accessing information stored in Versus.

Access

Figure 5.6 depicts the access to information stored on the Catalog. Each
workspace provides different access levels to the meta-data. The Archive Work-
space provides centralized access to all the archived Versions. The applications
define the timespace of the Versions they want to access through a Resolver ob-
ject. For instance, an application can use a Resolver that chooses the last Version
archived from each Source. The Group Workspace also provides centralized ac-
cess to the stored information but it holds at most one Version from each Source.
It does not provide historical views on the data. The Private Workspaces are
hosted on the application threads and keep one WU at a time enabling parallel
processing. The Archive and Group Workspace should be hosted on powerful
machines while the Private Workspaces can be hosted on commodity servers.
The workflow of a parallel application that accesses data stored in Versus is the

following;:

1. The application checks-out the required meta-data from the AW to the GW;

2. Several application threads are launched in parallel. Each one of them starts

its own PW and iteratively checks-out one WU at a time, processes it and

109

5. DESIGNING A WEB WAREHOUSE

executes the check-in into the GW. The contents cannot be updated after

they are set and any change on a content must be stored as new Facet;

3. When there are no unprocessed Working Units the new data kept in the
GW is checked-in into the AW.

The contents are not transferred in the check-out operations, they are retrieved
on-demand from the Content Manager. There are two assumptions behind this
design decision. The first is that the contents belonging to a WU represent
an amount of data much larger than the corresponding meta-data. To enable
quick transfers of contents during the check-outs, it would be necessary to use
faster network links between the workspaces. Plus, the application threads would
require more storage space to keep the contents locally.

The second assumption is that application threads do not need to process
all the contents belonging to a WU or they may be exclusively interested on
analyzing the meta-data. Thus, checking-out the contents in advance would be a

waste of resources.

Load

Figure 5.7 depicts the loading of data into Versus. The meta-data is loaded by
the application threads into the Private Workspaces, while the contents are stored
in the Content Manager that eliminates duplicates at storage level. However,
if a content is identified as a duplicate, the corresponding meta-data, such as
URL, is still stored in the Catalog PW. This way, the Webhouse clients can later
access the warehoused collection independently from the elimination of duplicates
mechanism. The work flow of a parallel application that loads information into

Versus is the following:

1. The application creates a new empty layer on the GW;

2. Several parallel threads are launched. Each one of them starts its own PW
and iteratively checks-out one empty WU, loads it with meta-data extracted

from the Sources and executes the check-in into the GW;

110

5.1 The Versus repository

Archive
workspace

T
w
repace—
workspace
Content
Manager e A
Private 8 8
workspaces
ﬁ ﬁmeta—data
-=
thread thread
I I

contents Eyternal data sources

Figure 5.7: Loading data into Versus.

3. When there are no unprocessed Working Units the new data kept in the
GW is checked-in into the AW.

The references to the new contents loaded into the Content Manager are kept
as meta-data in the PW. If an application thread fails before the check-in, for
instance due to a power failure, the references to the contents would be lost,
originating orphan contents that could not be later accessed. Versus provides
recovery methods to restart the processing of a Working Unit and remove the
orphan contents if an application thread fails. Versus also supports direct loads
to the Group or Archive Workspaces but they should be used for small amounts

of data because parallel loading is not supported.

5.1.2.3 Implementation

The Catalog was mainly implemented using the Java environment and relational
database management systems (DBMS). The AW and GW were implemented
using Oracle 9i DBMS (Oracle Corporation, 2004). The advanced administra-

tion features of this DBMS, such as partitioning or query optimizations, enable

111

5. DESIGNING A WEB WAREHOUSE

the configuration of the system to be used in the context of Web Warehousing,
addressing efficiently the processing of large amounts of data. The use of the
SQL language for data manipulation enabled the reuse of the code in the three
kinds of workspaces, although each one also had particular data structures and
optimization profiles.

The PW used HyperSonicSQL DBMS (HyperSonicSQL). Tt is written in Java

and can be configured to run in three modes:

Memory. The DBMS runs inside the client application. The data is kept ex-
clusively in-memory. If there is failure of the client application the data is

lost;
File. The DBMS runs inside the client application but the data is stored in files;

Client/server. The DBMS and client applications run independently and com-
municate through a network connection using JDBC. The data can be kept

in memory or in files.

The PW was implemented using the memory-mode because it provide faster
responses and it was assumed that failures of the clients were not frequent. The
choice of HyperSonicSQL for implementing the PW imposed that each application
thread could not host more than one PW at a time because HyperSonicSQL only
supports one database instance within each Java Virtual Machine. The Catalog
clients access the information in the workspaces using a application programming
interface (API) written in Java using JDK 1.4.2 (4 526 lines of code). This API
accesses the databases using the Java Database Connectivity interface (JDBC)
and hides the underlying technologies from the client applications. The Catalog
also enables the submission of direct commands to the database management

systems to take advantage from their advanced features.

5.2 The VN crawler

A WWh crawls data from the web to extract new information. The permanent

evolution of the web and the upcoming of new usage contexts demands continuous

112

5.2 The VN crawler

Partitioning DNS Use keep-alive | Avoid server | Reuse site | Independency
strategy caching connections overloading meta-data
P ++ ++ ++ + -
Site + + + ++ ++
Page - - - - ++

Table 5.1: Comparison of the partitioning strategies.

research in crawling systems. Kahle (2002), the founder of the Internet Archive,
revealed that their commercial crawler is rewritten every 12—18 months to reflect
changes in the structure of the web. Although a crawler is conceptually simple,
its development is expensive and time consuming, because most problems arise
when the crawler leaves the experimental environment and begins harvesting the
web.

This section discusses crawling. First, it presents the requirements for a
crawler and discusses how the web characteristics influence the choice of a suit-
able partitioning function for the URL space. Then, it presents a flexible and
robust crawler architecture that copes with distinct usage contexts. Finally, it
provides a detailed description of hazardous situations to crawling and discusses

solutions to mitigate their effects.

5.2.1 Partitioning strategies

A suitable partitioning function that divides the URL space across the set of
Crawling Processes that compose a distributed crawler must be chosen according
to the characteristics of the portion of the web being harvested. Otherwise, the
requirements for a crawler may not be fulfilled. Three partitioning strategies were
analyzed: IP, site and page partitioning (see Chapter 2). The number of URLs
contained in a partition should be ideally constant to facilitate load balancing.
The page partitioning is the most adequate according to this criterion. The
IP partitioning tends to create some extremely large partitions due to servers
that host thousands of sites, such as Geocities (www.geocities.com) or Blogger
(www.blogger.com). The site partitioning is more likely to create partitions
containing a single URL, due to sites under construction or presenting an error

message. Thus, the efficiency of the IP and site partitioning is more dependent on

113

www.geocities.com
www.blogger.com

5. DESIGNING A WEB WAREHOUSE

the characteristics of the portion than page partitioning. Table 5.1 summarizes
the relative merits of each strategy, which are characterized by the following

determinants:

DNS caching. A CP executes a DNS lookup to map the site name contained
in an URL into an IP address, establishes a TCP connection to the corre-
spondent web server and then downloads the content. The DNS lookups
are responsible for 33% of the time spent to download a content (Habib &
Abrams, 2000). Hence, caching a DNS response and using it to download
several contents from the same site optimizes crawling. A CP does not ex-
ecute any DNS lookup during the crawl when harvesting an TP partition,
because all the URLs are hosted on the IP address that identifies the par-
tition. A site partition requires one DNS lookup to be harvested because
all its URLs have the same site name. A page partition contains URLs
from several different sites, so a CP would not benefit from caching DNS

responses;

Use of keep-alive connections. Establishing a TCP connection to a web server
takes on average 23% of the time spent to download a content (Habib &
Abrams, 2000). However, HTTP keep-alive connections enable the down-
load of several contents reusing the same TCP connection to a server (Field-
ing et al., 1999). A page partition contains URLs hosted on different servers,
so a CP does not benefit from using keep-alive connections. On the other
hand, with IP partitioning an entire server can be crawled through one sin-
gle keep-alive connection. When a crawler uses site partitioning, a single
keep-alive connection can be used to crawl a site. However, the same web
server may be configured to host several virtual hosts. Then, each site will

be crawled through a new connection;

Server overloading. In general, a crawler should respect a minimum interval of
time between consecutive requests to the same web server to avoid overload-
ing it. This is called the courtesy pause. Page partitioning is not suitable to

guarantee courtesy pauses, because the URLs of a server are spread among

114

5.2 The VN crawler

several partitions. Thus, if no further synchronization mechanism is avail-
able, the Crawling Processes may crawl the same server simultaneously,
disrespecting the courtesy pause. The page partitioning requires that each
CP keeps track of the requests executed by the other ones to respect the
courtesy pause. With IP partitioning, it is easier to respect the courtesy
pause because each CP harvests exclusively the URLs of a web server and
simply needs to register the time of the last executed request to respect it.
A crawler using site partitioning respects at first sight a minimum interval
of time between requests to the same site but, a server containing virtual
hosts may be overloaded with requests from Crawling Processes that har-
vest its sites in parallel. On the other hand, a web server containing virtual
hosts should be designed to support parallel visits to its sites performed
by human users. Hence, it should not become overloaded with the parallel

visits executed by the Crawling Processes;

Reuse of site meta-data. Sites contain meta-data, such as the Robots Exclu-
sion file, that influences crawling. The page partitioning strategy is not
suitable to reuse the site’s meta-data because the URLs of a site are spread
across several partitions. With the IP partitioning, the site’s meta-data
can be reused, but it requires additional data structures to keep the corre-
spondence between the sites and the meta-data. Notice however that this
data structure can grow considerably, because there are IP partitions that
contain thousands of different sites generated through virtual hosting. On
its turn, when a crawler is harvesting a site partition, the site’s meta-data
is reused and the crawler just needs to manage the meta-data of a single

site;

Independency. The site and page partitioning enable the assignment of an URL
to a partition independently from external resources. The IP partitioning
depends on the DNS servers to retrieve the IP address of an URL and it
cannot be applied if the DNS server becomes unavailable. If the site of an
URL is relocated to a different IP address during a crawl, two invocations

of the function for the same URL would return different partitions. In this

115

5. DESIGNING A WEB WAREHOUSE

case, the URLs hosted on the same server would be harvested by different

Crawling Processes.

5.2.2 Crawler architecture

This section details the design of the VN crawler. It was designed as a Versus
client application to take advantage of the distribution features provided by the
Versus repository. VN has a hybrid Frontier, uses site partitioning and dynamic-

pull assignment:

Hybrid frontier. Each CP has an associated Local Frontier where it stores the
meta-data generated during the crawl of a partition. The meta-data on the
seeds and crawled URLs is stored on the Global Frontier. A CP begins
the crawl of a new site partition by transferring a seed from the Global
to its Local Frontier (check-out). Then, the URLs that match the site
are harvested by the CP. When the crawl of the partition is finished, the
correspondent meta-data is transferred to the Global Frontier (check-in).
A CP successively checks-out a partition containing a seed, harvests the
corresponding information from the web and checks-in the resultant meta-

data, until there are no unvisited seeds in the Global Frontier;

Site partitioning. Besides the advantages discussed in the previous Section,
three additional reasons lead to the adoption of the site partitioning strat-
egy. First, a CP frequently accesses the Local Frontier to execute the URL-
seen test. As Portuguese sites are typically small and links are mostly
internal to the sites (see Chapter 3), the Local Frontier can be maintained
in memory during the crawl of the site to optimize the execution of the
URL-seen test. Second, web servers are designed to support access pat-
terns typical of human browsing. The crawling of one site at a time enables
the reproduction of the behavior of browsers, so that the the actions of the
crawler do not disturb the normal operation of web servers. Third, site par-
titioning facilitates the implementation of robust measures against spider

traps;

116

5.2 The VN crawler

Coordinator i i Manager

\\U// Seeder

H —
Global

frontier

Administrator

CNode | CNode
H

Figure 5.8: VN architecture.

Dynamic-pull assignment. The Global Frontier assigns partitions to Crawling
Processes as they pull them. The Global Frontier guarantees that a site is
never harvested simultaneously by two Crawling Processes. The Global
Frontier identifies each partition with the site’s hash and manages three
lists: i) sites to crawl; ii) sites being crawled and; iii) sites crawled. When
a CP checks-out a partition, it is moved from the first to the second list.

The checks-in moves the partition from the second to the third list.

Figure 5.8 describes VN’s architecture. It is composed by a Global Frontier, a
Manager that provides tools to execute administrative tasks and several Crawling

Nodes (CNodes). The Manager is composed by:

e The Seeder that generates seeds to a new crawl from user submissions, DNS
listings and home pages of previously crawled sites and inserts them in the
Global Frontier;

e The Reporter that gets statistics on the state of the system and emails them

to a human Administrator,

e The Cleaner allows to release resources acquired by faulty Crawling Pro-

cesses.

Each CNode hosts:

117

5. DESIGNING A WEB WAREHOUSE

‘ cP || Yolume Local Frontier | | Global Frontier Classifier ‘Collector | Parser ‘Tmte:(tractor Site |
A 1 | | 1 1 ' 1 i
i checkOut{)- . i ! i i i
! M getREP() ! ! ! !
1 1 \ 1 |
a = : ! : -
locp etURL: ' ! ' !
e 0 starti) i ! i HEAD{) !
I I 1 1 1
a a LU
1
1 1 arse 1]
i i parse) | extractText () |
= = 1
1 I
! joind) !
! isContentRelevant() ! ' L
: U
i
1
|
insertMetaData()
1
store() |
1
)munesypwse()
[hasHotUnvisitedURLs]
checking)

Figure 5.9: Sequence diagram: crawling a site.

e The Crawling Processes and the corresponding Local Frontiers;
e One Volume that stores the harvested contents;

e One Watchdog that restarts the Crawling Processes if they are considered

dead (inactive for a given period of time).

The scheduling of the execution of the Crawling Processes within a CNode is
delegated to the operating system. It is assumed that when a CP is blocked, for

instance while executing IO operations, another CP is executed.

5.2.2.1 Crawling algorithm

Crawlers get a seed to a site and follow the links within it to harvest its contents.
They usually impose a depth limit to avoid the harvesting of infinite sites (Baeza-
Yates & Castillo, 2004). There are three policies to traverse links within a site
(Cothey, 2004):

118

5.2 The VN crawler

Best-first. The crawler chooses the most relevant URLs to be crawled first ac-
cording to a given criteria as, for instance, their PageRank value (Brin &
Page, 1998);

Breadth-first. The crawler iteratively harvests all the URLs available at each
level of depth within a site;

Depth-first. The crawler iteratively follows all the links from the seed until the

maximum depth is achieved.

The best-first policy is aimed to select relatively small sets of high-quality
pages to save system resources, such as bandwidth. These pages are usually
spread across different sites which could jeopardize the advantages of using site
partitioning. However, Najork & Wiener (2001) showed that in practice breadth-
first and best-first policies yield high-quality pages. The breadth-first policy
presents the advantage of being simpler to implement than best-first and avoids
server overloading (Chakrabarti et al., 2002). Crawlers impose a limit on the
number of URLs visited within each site as a robustness measure against infinite
sites. Assuming that the most relevant pages are located at shallower levels of
depth, when using the depth-first approach the maximum number of URLs for a
site may be achieved before a significant part of important pages were harvested.
Thus, the VN Crawling Processes harvest information from the web visiting one
site at a time in a breadth-first mode. Figure 5.9 details the stages of this process.
The crawl of a new site begins when the CP checks-out a seed. The CP downloads
the "robots.txt" file (Robots Exclusion Protocol) and then, iteratively harvests
one URL at a time from the site until there are no URLSs to visit (loop). The CP
launches a Collector thread that downloads and processes information referenced
by an URL. The Collector requests the HI'TP headers of the URL to check if the
content should be downloaded. For instance, if the content is an MP3 file and the
selection criteria defines that only HTML pages should be harvested, the content
is not downloaded. Then, the content is parsed to extract various meta-data,
such as links to other pages. The extraction and storage of meta-data from the
contents during the crawl while they are stored on memory, avoids redundant

processing by the Versus client applications that will latter process the web data.

119

5. DESIGNING A WEB WAREHOUSE

Finally, the Collector returns the content and extracted meta-data to the CP.
This information is analyzed by a Classifier that checks if the content matches
the selection criteria. If the content is considered relevant, it is stored in a Volume
and the meta-data is inserted in the Local Frontier, otherwise it is discarded. The
CP sleeps after crawling each URL to execute a courtesy pause. When the CP

finishes visiting the site, it checks-in the partition.

5.2.2.2 Fault management

To face hazardous situations while crawling the web and possible hardware prob-
lems on the underlying cluster of machines, VN was designed to tolerate faults
at different levels in its components.

A CP launches an independent thread (Collector) to execute sensitive tasks,
such as the download, meta-data extraction and parsing of a content. The CP
terminates the execution of the Collector after a limited time. Hence, a fault
caused by the harvest and processing of a single content does not compromise the
crawl of the remaining contents at the site. However, this imposes the overhead
of launching a new thread to crawl each URL.

The Crawling Processes are independent from each other and the failure of one
of them does not influence the execution of the remaining. However, they depend
on the Global Frontier for synchronization. A CP operates independently from
the Global Frontier between the check-out and the check-in events. A fault of the
Global Frontier causes a gradual degradation of the system because the Crawling
Processes will continue harvesting until the check-in is tempted. As a result,
there is an interval of time when it is possible to recover the Global Frontier
without stopping the crawl. For instance, if a network cable is disconnected
from the machine hosting the Global Frontier, the incident can be solved without
influencing the progress of the crawl.

The contents can be stored locally on the same machine that hosts the CP or
remotely on any other machine that hosts a Volume. Therefore, if the Volume
used by a CP fails, for instance because it exhausted its storage capacity, the CP
can be quickly set to store contents on remote Volumes, without requiring any

data migration.

120

5.2 The VN crawler

www.mysite.com www.othersite.com

home speding

<a href="http://www.othersite.com/page.html" /4’ /

— - . | =]
<a href="http://www.othersite.com/orphan.html" T — deen i \
~deep link

N -) page.html

YA\

N)
N deep seeding
N

A orphan.html

N

sibling1.html sibling2.html

Figure 5.10: Deep vs. home page seeding policies.

5.2.2.3 URL-seen test

The URL-seen test is executed in two steps: first, when the URLs are inserted
in the Local Frontier and upon the check-in to the Global Frontier. 81.5% of the
links embedded in pages reference URLSs internal to its site (Broder et al., 2003).
The URL-seen test for internal URLs is done locally because all the seen URLSs
belonging to the site are covered by the Local Frontier. So, when the CP finishes
harvesting the site, it can check-in the internal URLs to the Global Frontier
without further testing. However, the URL-seen test for the external URLs must
be executed against all the URLs in the Global Frontier during check-in, because
the URLs may have been inserted there meanwhile by another CP. Thus, the
URL-seen test for external URLs is an expensive operation and the number of
external URLs to check-in should be minimized. Nonetheless, the external URLSs
are important because they are potential seeds to newly found sites. There are

three policies for the insertion of external URLs in the Frontier:

Home page. The home page policy assumes that all the contents within a site
are accessible through a link path from its home page. Hence, a CP replaces
every external URL by its site home page before inserting it in the Local
Frontier (see Figure 5.10). The home page policy reduces the number of
external URLs to check-in. However, if a CP cannot follow links from the

home page, the remaining pages of the site will not be harvested;

121

5. DESIGNING A WEB WAREHOUSE

Deep link. A deep link references an external URL different than the home page.
The deep link policy assumes that there are pages not accessible through
a link path from the home page of the site. The CP inserts the external
URLs without any change in the Local Frontier to maximize the coverage
of the crawl. For instance, in Figure 5.10 the URL www.othersite.com/
orphan.html is not accessible from the home page of the site but it is linked
from the site www.mysite.com. However, if the external URL references a
content without links, such as a postscript document, the crawl of the site
would be limited to this content. Some authors believe they make pages
unavailable by removing the internal links to them, forgetting that external
pages may maintain links to these pages. The deep link policy enables the
crawling of these supposedly unavailable pages and may expose them in

search engine results;

Combined. Follows deep links but always visits the home page of the sites. This
policy is intended to maximize coverage. Even if a deep link references a
content without links, the remaining site accessible through a link path

from the home page will be harvested.

VN supports the home page and combined policies. As an optimization,
when VN is configured to follow the home page policy, it discards the external
URLSs hosted on the sites contained in the seeds of the crawl, because they were
already inserted in the Global Frontier by the Seeder. Discarding external URLs
contained in the initial seed list breaks the deep link and combined policies,
because a link may reference a page from a site contained in the initial seed list
that is not accessible from the home page.

I believe that in general, the adoption of the combined policy provides a
marginal gain of coverage against the home page policy because pages are usually
accessible through a link path from their home pages. Hence, the home page
policy is suitable for most crawling contexts, while the combined policy should
be used when coverage needs to be maximized, such as to execute exhaustive

crawls of corporate intranets.

122

www.othersite.com/orphan.html
www.othersite.com/orphan.html
www.mysite.com

5.2 The VN crawler

5.2.2.4 Optimizing bandwidth usage

Invalid URLs reference contents that cannot be downloaded. Many URLs ex-
tracted from pages are invalid and they degrade the performance of a crawler
because it will waste resources trying to harvest them. Thus, visits to invalid

URLs should be minimized. They can be pruned using the following strategies:

Discarding malformed URLs. A malformed URL is syntactically incorrect
(Berners-Lee et al., 2005). Malformed URLs are most likely caused by a
typing errors. For instance, an URL containing white spaces is syntacti-
cally incorrect. However, there are web servers that enable the usage of
malformed URLs;

Discarding URLs that reference unregistered sites. The site name of an
URL must be registered in the DNS. Otherwise, the crawler would not be
able to map the domain name into an IP address to establish a connection
to the server and download the content. Thus, an URL referencing an
unregistered site name is invalid. However, testing if the site names of
the URLs are registered before inserting them into the Frontier imposes an

additional overhead on the DNS servers.

Duplicates occur when two or more different URLs reference the same content.
A crawler should avoid harvesting duplicates to save on processing, bandwidth
and storage space. The crawling of duplicates can be avoided through the nor-

malization of URLs:

1. Case normalization: the hexadecimal digits within a percent-encoding triplet
(e.g., "%3a" versus "%3A") are case-insensitive and therefore should be

normalized to use uppercase letters for the digits A-F;

2. Percent-Encoding Normalization: decode any percent-encoded octet that

corresponds to an unreserved character;

3. Convert site name to lower case: the domain names are case insensitive
thus, the URLs www.site.com/ and WWW.SITE.COM/ reference the same

content;

123

www.site.com/
WWW.SITE.COM/

5. DESIGNING A WEB WAREHOUSE

4. Conwvert relative to absolute file paths: For instance, www.site.com/dir/. .

/index.html to www.site.com/index.html;

5. Remove identification of the HTTP default port 80: For instance, change

www.site.com:80/index.html to www.site.com/index.html;

6. Add trailing '/’ when the path is empty: The HTTP specification states
that if the path name is not present in the URL, it must be given as ’/’
when used as a request for a resource (Fielding et al., 1999). Hence, the
transformation must be done by the client before sending a request. This
rule of normalization prevents that URLs, such as www.site.com and www.

site.com/, originate duplicates;

7. Remove trailing anchors: anchors are used to reference a part of a page (e.g
www.site.com/file#tanchor). However, the crawling of URLs that differ

only on the anchors would result in repeated downloads of the same page;

8. Add prefix "www." to site names that are second-level domains: the fol-
lowing section will show that most of the sites named with a second-level

domain are also available under the site name with the prefix "www.";

9. Remove well-known trailing file names: two URLSs that are equal except
for a well known trailing file name such as "index.html", "index.htm", "in-
dex.shtml", "default.html" or "default.htm", usually reference the same
content. The results obtained in experiments crawling the Portuguese Web
showed that removing these trailing file names reduced the number of du-
plicates by 36%. It is technically possible that the URLs with and without
the trailing file reference different contents. However, situations of this kind
were not found in the experiments. The conclusion is that this heuristic does

not reduce the coverage of a crawler noticeably.

A request to an URL may result in a redirect response, (3** HTTP response
code), to a different one named the target URL. For instance, the requests to
URLs like www.somesite.com/dir, where dir is a directory, commonly result
in a redirect response (301 Moved Permanently) to the URL www.somesite.

com/dir/. Browsers follow the redirects automatically, so they are not detected

124

www.site.com/dir/../index.html
www.site.com/dir/../index.html
www.site.com/index.html
www.site.com:80/index.html
www.site.com/index.html
www.site.com
www.site.com/
www.site.com/
www.site.com/file#anchor
www.somesite.com/dir
dir
www.somesite.com/dir/
www.somesite.com/dir/

5.2 The VN crawler

by the users. A crawler can also automatically follow a redirect response to
download the content referenced by the target URL. However, both the redirect
and the correspondent target URLs reference the same content. If they are linked
from pages, the same content will be downloaded twice. Automatically following
redirects during a crawl increased the number of duplicates by 26%. On the
other hand, when a crawler does not follow redirects, it considers that a redirect
is equivalent to a link to an URL. The crawler inserts both the redirect and target
URLs in the Frontier: the former is marked as a redirect and the target URL is
visited to download the content. The number of URLSs inserted in the Frontier
increases, approximately by 5% (Castillo, 2004; Gomes & Silva, 2005; Heydon &
Najork, 1999), but duplicates are avoided.

5.2.2.5 Implementation

The VN web crawler integrates components developed within the XLDB Group
and external software. It was mainly written in Java using jdk1.4.2 (3 516 lines
of code), but it also includes software components implemented in native code.
The Crawling Processes use hash tables to keep the list of duphosts and the DNS
cache. The Parser was based on WebCAT, a Java package for extracting and
mining meta-data from web documents (Martins & Silva, 2005b). The Classifier
used to harvest the Portuguese Web includes a language identifier (Martins &
Silva, 2005a). The Robots Exclusion file interpreter was generated using Jlex
(Berk & Ananian, 2005). The Seeder and the Cleaner are Java applications.
The Reporter and Watchdog were implemented using shell scripts that invoke

operating system commands, such as ps or iostat.

VN was designed as a Versus client application to take advantage of the distri-
bution features provided by the repository. The Local Frontiers of the Crawling
Processes were implemented using the Versus Private Workspaces. The Global
Frontier was implemented using the Versus Group Workspace. The Content Man-

ager supports the Volumes used to store the harvested contents.

125

5. DESIGNING A WEB WAREHOUSE

5.3 Coping with hazardous situations

The web is very heterogeneous and there are hazardous situations to crawling
that disturb the extraction of web data to be integrated in a WWh. Some of
them are malicious, while others are caused by mal-functioning web servers or
authors that publish information on the web without realizing that it will be
automatically processed. Crawler developers must be aware of these situations
to design robust crawlers capable of coping with them.

The description of hazardous situations to crawling is scarce in the scien-
tific literature, because most experiments are based on simulations or short-term
crawls that do not enable their identification. Hazardous situations are commonly
ignored in academic studies because the scientific hypotheses being tested assume
a much simpler model of the web than observed in reality. Hence, the detection
of hazardous situations on the web is a recurrent problem that must be addressed
by every new system developed to process web data. Moreover, new hazardous
situations arise as the web evolves, so their monitoring and identification requires
a continuous effort.

This section describes hazardous situations found on the Portuguese Web
and discusses solutions to mitigate their effects. First, it presents examples of
situations that cause unnecessary downloads and degrade the performance of a
crawler. Then, it describes contents that are hard to be automatically processed
and frequently prevent crawlers from following their embedded links to other
contents. Finally, it discusses heuristics to detect sites with different names that
provide the same contents (duphosts), causing the crawl of a large number of

duplicates.

5.3.1 Spider traps

Heydon & Najork (1999) defined a spider trap as an URL or set of URLs that
cause a crawler to crawl indefinitely. In this thesis the definition was relaxed and
situations that significantly degrade the performance of a crawler were also con-
sidered as spider traps, although they may not originate infinite crawls. Initially,

the pages dynamically generated when a server received a request were pointed as

126

5.3 Coping with hazardous situations

the general cause of spider traps and they were excluded from crawls as a preven-
tive measure (Cho et al., 1998). However, dynamic pages became very popular
because they enable the management of information in databases independently
from the format used for publication. It was estimated that there are 100 times
more dynamic pages than static ones (Handschuh et al., 2003). Thus, preventing
a crawler from visiting dynamic pages to avoid spider traps would exclude a large
parcel of the web.

Some webmasters create traps to boost the placement of their sites in search
engine results (Heydon & Najork, 1999), while others use traps to repel crawlers
because they spend the resources of the web servers. Spider traps bring disad-
vantages to their creators. A trap compromises the navigability within the site
and human users get frustrated if they try to browse a spider trap. Plus, search
engines have a key role in the promotion of web sites, and they ban sites contain-
ing traps from their indexes (Cho & Roy, 2004; Olsen, 2002). There are several

examples of spider traps and possible solutions to mitigate their effects:

DNS wildcards. A zone administrator can use a DNS wildcard to synthesize
resource records in response to queries that otherwise do not match an exist-
ing domain (Mockapetris, 1987). In practice, any site under a domain using
a wildcard will have an associated IP address, even if nobody registered
it. DNS wildcards are used to make sites more accepting of typographical
errors in URLs because they redirect any request to a site under a given
domain to a default doorway page (ICANN, 2004). The usage of DNS
wildcards is hazardous to crawlers because they enable the generation of
an infinite number of site names to crawl under one single domain. More-
over, it is not possible to query a DNS server to detect if a given domain
is using wildcards. However, a crawler should be able to know that a given
site is reached through DNS wildcarding before harvesting it. To achieve
this, one could execute DNS lookups for a set of absurd sites names under
a domain and check if they are mapped to the same IP address. If they
are, the domain is most likely using a DNS wildcard. This way, a black
list of domain names that use DNS wildcards could be compiled and used

to prevent crawlers from harvesting them. However, many domains that

127

5. DESIGNING A WEB WAREHOUSE

use DNS wildcarding also provide valuable sites. For instance, the domain
blogspot.com uses DNS wildcarding but also hosts thousands of valuable

sites;

Malfunctions and infinite size contents. Malfunctioning sites are the cause
of many spider traps. These traps usually generate a large number of URLs
that reference a small set of pages containing default error messages. Thus,
they are detectable by the abnormally large number of duplicates within
the site. For instance, sites that present highly volatile information, such
as online stores, generate their pages from information kept in a database.
If the database connection breaks, these pages are replaced by default er-
ror messages informing that the database is not available. A crawler can
mitigate the effects of this kind of traps by not following links within a
site when it tops a number of duplicates. A malfunctioning site may start
serving contents with a higher latency. This situation would cause that
a crawler would take too much time to harvest its contents, delaying the
overall progress of the crawl. To prevent this, a crawler should impose a
limit on the time to harvest each URL.

There are also infinite size contents, such as online radio transmissions, that
cause traps if a crawler tries to download them. A crawler may truncate the
content if it exceeds a maximum limit size. Notice that contents in HTML
format can be partially accessed if they are truncated, but executable files

become unusable;

Session identifiers and cookies. H1TP is a stateless protocol that does not
allow tracking of user reading patterns by itself. However, this is often
required by site developers, for instance, to build profiles of typical users.
A session identifier embedded in the URLs linked from pages allows main-
taining state about a sequence of requests from the same user. According
to web rules, a session identifier should follow a specific syntax beginning
with the string "SID:" (Hallam-Baker & Connolly, 2005). But in practice,
the session identifiers are embedded by developers in URLs as any other

parameters. Session identifiers have lifetimes to prevent that different users

128

blogspot.com

5.3 Coping with hazardous situations

are identified as the same one. A session identifier replacement causes that
the URLs linked from the pages are changed to include the new identifier.
If the crawl of a site lasts longer than the lifetime of a session identifier, the
crawler could get trapped harvesting the new URLs generated periodically
to include the new session identifiers. The replacement of session identifiers
also originates duplicates, because the new generated URLs, reference the
same contents as previously crawled (Douglis et al., 1997). A crawler may
avoid getting trapped by stop following links within the site when a limit
number of duplicates is achieved. This heuristic fails if the pages of the site
are permanently changing and the new URLs reference distinct contents.
In this case, the insertion of new links within the site should be stopped

when a limit number of URLs crawled from the site is achieved.

Cookies have been replacing session identifiers embedded in URLs (Bent
et al., 2004). A cookie is a piece of data sent by the site that is stored
in the client and enables tracking user sessions without URL changes. A
crawler able to process cookies is less prone to fall in traps caused by session
identifiers embedded in URLSs. It was observed that 27% of the Portuguese
Web URLs contained well-known session identifier parameter names (ph-
psessid, sid, sessionid). Interestingly, 95% of them were hosted in sites
developed with PHP engines. A visit to some of these sites revealed that
the links of the pages were changed by the web server to contain session
identifiers when the HTTP client did not accept cookies. VN was enhanced
to accept cookies and the percentage of URLs containing session identifiers
dropped to 3.5%. This also had the noteworthy effect of reducing the av-
erage URL length from 74 to 62 characters, which saved space on the data

structures in the Frontiers;

Directory list reordering. Apache web servers generate pages to present lists
of files contained in a directory. This feature is used to easily publish files
on the web. Figure 5.11 presents a directory list and its embedded links.
The directory list contains 4 links to pages that present it reordered by
Name, Last-Modified date, Size and Description, in ascendent or descendent

order. Thus, if a crawler follows all the links embedded in a directory

129

5. DESIGNING A WEB WAREHOUSE

IR I (Y hitp://apache clix pt/foundation press it =D

Index of /foundation/press/kit

Name Last modified Size Description
3 Parent Directory 08-Jan—-2005 01:10 -
@ feather.svg 1%9-Dec-2004 20:30 1010k
@ feather.ill 22-8ep-2001 20:27 883k
asf logo.eps 22-8ep-2001 19:21 402k
apache pb.svg 1%-Dec-2004 20:30 0k
@ apache pb.ill 22-8ep-2001 20:27 301k

Apache/1. 3. 26 Server at apache. clix.pt Port 80

;

| [Lock
“Name _ Address | Open
 Index of ffoundation/press/kit hitp: /fapache. clix.ptifoundatonforess kit ?h=C
Marne bty ffapache. clix. ptfoundationspress kit Fh=A openin -
Last modified bty ffapache. clix ptfoundation/press kit fM=A A
Size http: ffapache.clix.ptffoundation/press kit/?S=A
Description http:ffapache.clix.pt/foundation/press/kit/?D=A

Figure 5.11: Apache directory list page and the linked URLs.

list page, it will harvest the same information referenced by 8 different
URLs. Moreover, a directory list enables browsing a file system and may
accidentally expose contents that were not meant to be published on the
web. A crawler could get trapped if harvesting, for instance, temporary files
periodically generated in a directory. A crawler could exclude URLs that
reference directory listings to avoid traps but they are frequently used to

publish valuable contents, such as open-source software and documentation;

Growing URLs. A spider trap can be set with a symbolic link from a directory
/spider to the directory / and a page /index.html that contains a link to
the /spider directory. Following the links will create an infinite number of
URLs (www.site.com/spider/spider/...) (Jahn, 2004). Although, this
example may seem rather academic, these traps exist on the web. There are
also advertisement sites that embedded the history of the URLs followed
by an user on the links of their pages. The idea is that when users reach

a given page they stop browsing and the URL that referenced the page

130

/spider
/
/index.html
/spider
www.site.com/spider/spider/...

5.3 Coping with hazardous situations

contains the history of the URLs previously visited. This information is
useful for marketing analysis. The problem is that a crawler never stops
"browsing" and it gets trapped following the generated links. Hence, a

crawler should impose a limit on the length of the URLs harvested.

5.3.2 Hard to interpret contents

Crawlers interpret the harvested contents to extract valuable data such as links or
texts. If a crawler cannot extract the linked URLs from a page, it will not be able
to iteratively harvest the web. The page text is important for focused crawlers
that use classification algorithms to determine the relevance of the contents, for
instance, a focused crawler could be interested in harvesting contents containing a
set of words. However, the extraction of data from contents is not straightforward

because there are situations on the web that make contents hard to interpret:

Wrong identification of media type. The media type of a content is identi-
fied through the HT'TP header field Content-Type. HT'TP clients choose the
adequate software to interpret the content according to its media type. For
instance, a content with the Content-Type application/pdf is commonly in-
terpreted by the Adobe Acrobat software. However, sometimes the Content-
Type values do not correspond to the real media type of the content (Gomes
et al., 2006a) and a HTTP client may not be able to interpret it correctly.
An erroneous Content-Type response can be detected through the analysis
of the extracted data. A page that does not contain any links raises the
suspicion that something went wrong. If the text extracted from a content
does not contain words from a dictionary or does not contain white spaces
between sequences of characters, the content may have been incorrectly
interpreted. If a crawler identifies an erroneous Content-Type response it
may try to identify the correct type to enable the correct interpretation of
the content. The format of a content is commonly related to the file name
extension of the URL that references it. This information can be used to
automatically identify the real media type of the content. However, the us-
age of file name extensions is not mandatory within URLs and the same file

name extension may be used to identify more than one format. For example

131

5. DESIGNING A WEB WAREHOUSE

the extension .rtf identifies contents in the application /rtf and text/richtext
media types. The media type could also be guessed through the analysis of
the content. For instance, if the content begins with the string <html> and
ends with the string </html> it is most likely an HTML page (text/html
media type). However, this approach requires specific heuristics to each of
the many media types available on the web and identifying the media type

of binary files is a complex task;

Malformed pages. A malformed content does not comply with its media type
format specification, which may prevent its correct interpretation. Mal-
formed HTML contents are prevalent on the web. One reason for this is
that authors commonly validate their pages through visualization on their
browsers, which tolerate format errors to enable the presentation of pages to
humans without visible errors. As a result, the HTML interpreter used by a
crawler should also be tolerant to common syntax errors, such as unmatched
tags (Martins & Silva, 2005b; Woodruff et al., 1996);

Cloaking. A cloaking web server provides different contents to crawlers than to
other clients. This may be advantageous if the content served is a more
crawler-friendly representation of the original. For instance, a web server
can serve a Macromedia Shockwave Flash Movie to a browser and an alter-
native XML representation of the content to a crawler. However, spammers
use cloaking to deceive search engines without inconveniencing human vis-

itors.

Cloaking may be also unintentional. There are web servers that, when in the
presence of an unrecognized client, return a page informing that the client’s
browser does not support the technology used in the site and suggest the
usage of an alternative browser. A crawler may identify itself as a popular
browser to avoid suffering from this cloaking situation. However, this solu-
tion violates the principles of politeness and webmasters could confuse the

consecutive visits of a crawler with an attack to their sites;

JavaScript-intensive pages. JavaScript is a programming language created to

write functions, embedded in HTML pages that enable the generation of

132

5.3 Coping with hazardous situations

presentations that were not possible using HTML alone. The AJAX (Asyn-
chronous JavaScript And XML) libraries contributed to the widespread us-
age of this language in pages (Paulson, 2005). It is becoming common to
find pages where normal links are JavaScript programs activated through
clicking on pictures or selecting options from a drop-down list (Thelwall,
2002).

A JavaScript program may build a link or a text to be accessed through a se-
ries of computational steps. However, writing an interpreter to understand
what a JavaScript program is doing is extremely complex and computa-
tionally heavy. As consequence, the extraction of data from pages written
using JavaScript is hard and crawlers usually identify the embedded URLs
using pattern matching. For instance, they identify an URL embedded in
a JavaScript program if it begins with the string "http://".

5.3.3 Duplicate hosts

Duplicate hosts (duphosts) are sites with different names that simultaneously

serve the same content. Technically, duphosts can be created through the repli-

cation of contents among several machines, the usage of virtual hosts or the

creation of DNS wildcards. There are several situations that originate duphosts:

Mirroring. The same contents are published on several sites to backup data,

reduce the load on the original site or to be quickly accessible to some

users;

Domain squatting. Domain squatters buy domain names desirable to specific

businesses, to make profit on their resale. The requests to these domains
are redirected to a site that presents a sale proposal. To protect against
squatters, companies also register multiple domain names related to their

trade marks and point them to the company’s site;

Temporary sites. Web designers buy domains for their customers and point

them temporally to the designer’s site or to a default "under construction"
page. When the customer’s site is deployed the domain starts referencing
it.

133

5. DESIGNING A WEB WAREHOUSE

The detection of duphosts within a web data set can be used to improve in-
formation retrieval algorithms. For instance, search engines can avoid presenting
the same information published in duphosts as different search results. Crawlers
should avoid crawling duphosts to save on bandwidth and storage space. Previous
works presented algorithms to detect duphosts within a set of contents harvested
from the web (Bharat et al., 2000; da Costa Carvalho et al., 2005). However,
preventing a crawler from harvesting duphosts is more difficult than detecting
them on a static data set, because a list of duphosts extracted from a previously
compiled web collection may not reflect the current state of the web. Sites identi-
fied as duphosts may have meanwhile disappeared or started presenting distinct
contents.

Next, this section presents heuristics to identify duphosts within a data set
and describes an experiment to evaluate their application in crawling. The ex-
perimental data set was composed by 3.3 million pages crawled from 66 370 sites.
The intersection of content fingerprint signatures between sites was compared to
derive a list of pairs of duphosts, where the first site is considered a replica of
the second one, designated as the original. The election of the original within a
pair of duphosts is arbitrary because they both provide the same contents. Three

heuristics were considered to detect if two sites were duphosts:

SameHome. Both sites present equal home pages. The home page describes the
content of a site. So, if two sites have the same home page they probably
present the same contents. However, there are home pages that permanently
change their content, for instance to include advertisements, and two home
pages in the data set may be different although the remaining contents of
the sites are equal. On the other hand, there are temporary sites within the
data set composed by a single transient "under construction" home page,
that in a short notice after the data set was built, begin presenting distinct

and independent contents;

SameHomeAnd1Doc. Both sites present equal home pages and at least one
other equal content. This approach follows the same intuition than the
SameHome for the home pages but tries to overcome the problem of tran-

sient duphosts composed by a single page;

134

5.3 Coping with hazardous situations

Heuristic Invalid % of Precision | Relative

1P duphosts coverage
SameHome 6.7% 4.8% 68% 6.6
SameHomeAnd1Doc | 4.4% 3.9% 92% 2.1
Dups60 4% 3.7% 90% 2.5
Dups80 4.1% 2.2% 92% 2.0
Dups100 4.7% 0.4% 94% 1.0

Table 5.2: Results from the five approaches to detect duphosts.

DupsP. Both sites present a minimum percentage (P) of equal contents and
have at least two equal contents. Between the crawl of the duphosts to
build the data set, some pages may change, including the home page. This
approach assumes that if the majority of the contents are equal between two
sites, they are duphosts. A minimum of two equal contents was imposed to

reduce the presence of sites under construction.

Five lists of duphosts were extracted following the heuristics SameHome,
SameHomeAnd1Doc, and DupsP considering levels of duplication of 60%, 80%
and 100%. The proposed heuristics were evaluated by simulating their applica-
tion on a crawl executed 98 days after the creation of the data set. Table 5.2
summarizes the obtained results. A DNS lookup was executed for each site on
the duphosts lists and excluded those that did not have an associated IP address
because a crawler would not be able to harvest them. On average 4.8% of the
pairs were no longer valid because one of the duphosts did not have an associated
IP address (column Invalid IP). The 3" column of Table 5.2 presents percentage
of the total number of sites in the data set that were replicas identified through
each heuristic after the IP check. On average, 1 841 replicas were identified, which
represents 2.8% of the sites found within the data set. In order to measure the
precision of each heuristic, 50 random pairs of duphosts were chosen from each
list and visited simultaneously to verify if they still presented the same contents
(Precision column). The lowest number of pairs detected (Dups100) was used as
baseline to compare coverage (Relative coverage column). The SameHome heuris-

tic achieved the maximum relative coverage (6.6) but the lowest precision value

135

5. DESIGNING A WEB WAREHOUSE

Domain | % duphosts | % sites
level avoid lost

2nd level 30% 4%

3nd level 17% 16%

Table 5.3: Consequences of the normalization of the usage of the WWW prefix
in site names.

(68%). When it was imposed that at least one content besides the home page
must exist on both sites (SameHomeAnd1Doc), the relative coverage decreased
to 2.1 but the precision improved to 92%. The Dups100 heuristic detected sites
that shared all the contents and it achieved the highest precision of 9/%. The
remaining 6% of the pairs referenced sites that were no longer online, although
they still had an associated TP address. As the threshold of duplication decreased,
more replicas were identified, maintaining the precision over 90%, (see 2"¢ and
37 lines of Table 5.2).

The SameHome heuristic is an inexpensive way to detect duphosts because it
requires the comparison of just one page per site. However, it is the most prone
to identify transient duphosts originated by single-page sites under construction.
The detection of duphosts imposes an overhead on the crawler and avoiding the
crawl of a duphost containing one single page may not pay-off. The SameHome-
And1Doc overcomes this problem at the cost of comparing more contents per
site. The number of duphosts decreases as the threshold of duplicates required
between sites increases. At the same time, precision is improved. Due to the
permanent changes that occur on the web, I believe that the effectiveness of the
proposed heuristics to avoid the crawl of duphosts depends on the the age of the
data set used to extract the list of duphosts.

The most common reason for duphosts is the existence of site names that just
differ on the prefix "www.". 51% of the names of the duphosts detected on the
previous experiments differed just on this prefix. It is recommended that World
Wide Web site names begin with the prefix "www." (Barr, 1996). So, one way to
avoid the crawl of duphosts is to normalize the URLs to visit by appending the

"www." prefix when it is not present. However, there are site names that use a

136

5.4 Conclusions

different prefix and this change could generate invalid site names, excluding valid
URLs from the crawl.

An experiment was performed to evaluate the application of this heuristic
to prevent duphosts. The experimental data set was composed by two lists
of second-level domains (e.g. domain.pt) and third-level domains (e.g. subdo-
main.domain.pt) from the official registries. A list of home page URLs referencing
the domain names and the domain names with the prefix "www." was generated
and crawled. Table 5.3 presents the obtained results. The normalization heuris-
tic applied to the second-level domains avoided the crawl of 30% of duphosts
and 4% of the sites were excluded because they were not available with a name
containing the "www." prefix. For the third-level domains, just 17% of the sites
were duphosts due to the usage of the "www." prefix and 16% were lost due to
the normalization process. The results suggest that the success of appending the

prefix "www." to avoid duphosts depends on the domain level of the site name.

5.4 Conclusions

Web warehouses are powerful tools to help users harnessing web data. This
chapter presented the architecture of a WWh that addresses all the stages of
web data integration, from the extraction of information from the web to its
staging for mining applications. The proposed architecture was validated through
the development of a prototype named Webhouse. This chapter focused on the
extraction of information from the web and its management within a WWh.
Webhouse was designed considering the characteristics of web data. The in-
formation harvested from the Portuguese Web was integrated in Webhouse during
its development to study the influence of web characteristics in the design of a
WWh. The results obtained while modelling the Portuguese Web and previous
works showed that duplication is prevalent. Hence, it should be considered in the
design of a WWh. However, existing storage techniques, based on the persistence
of content identifiers that enable the elimination of partial duplicates, are not

adequate to Web Warehouses, because:

e URLs are highly transient;

137

5. DESIGNING A WEB WAREHOUSE

e Raise problems for the preservation of the stored data;

e Cannot be efficiently applied in large distributed storage systems.

The main components of Webhouse are the Versus repository and the VN
crawler. Versus supports versioning, parallel operation and meta-data manage-
ment. Previous works on web repositories focused mainly on the design of systems
that enable high-performance access to large amounts of contents (hundreds of
TB). The research performed to design Versus had a different scope, because it
aimed to define a flexible system architecture that enables its application to a
broader range of usage contexts. Versus supports complex access methods over
the meta-data, such as relational algebra operators.

The extraction of web data was studied to design the VN crawler. This chap-
ter presented a novel architecture for a scalable, robust and distributed crawler,
an analysis of methods for partitioning the URL space among the processes of a
distributer crawler and techniques to save on bandwidth and storage space. There
are important architectural choices that must be made, and the decisions are in-
fluenced by the crawling application requirements and characteristics of the web.
The standard URL normalization process is insufficient to avoid the download
of duplicates and can be improved with additional rules adequate to crawling.
Several situations on the web hazardous to crawling have been investigated and
solutions to mitigate their effects were proposed. These hazardous situations were
presented in the context of crawling, but they affect HT'TP clients in general. So,
the presented solutions can be used to enhance other systems that process web
data, such as browsers or proxies.

The next chapter presents the results obtained while validating the compo-

nents of Webhouse and shows how they were applied in several usage contexts.

138

Chapter 6

Validation

The Webhouse prototype was designed to study the influence of web characteris-
tics in the design of Web Warehouses. The proposed architecture was iteratively
developed and validated following an Engineering approach (Zelkowitz & Wal-
lace, 1998). Several versions of the system were successively released until its
design could not be significantly improved. The final version of the system was
subject to several experiments to validate its efficiency.

The data used to validate Webhouse was obtained through controlled and
observational methods. The controlled methods were used to validate the Web-
house components individually. Replicated experiments measured differences be-
fore and after using a new component. Dynamic analysis experiments collected
performance results in the production environment of the tumba! search engine.
The execution of experiments based on simulations with artificial data was min-
imized, because the web is hardly reproducible in a controlled environment and
the obtained results might not be representative of the reality.

The data collected to validate Webhouse as a complete system was mainly
gathered using observational methods. Webhouse was validated using a case
study approach during the development of a search engine for the Portuguese
Web. Data was obtained to measure the effectiveness of each new version of the
system. The final version of Webhouse was used in several projects to collect
feedback on its performance (field study validation method).

This chapter presents the obtained results. Section 6.1 presents the evaluation

results of the VN crawler. Section 6.2 describes the experimental results of the

139

6. VALIDATION

Config. | Nr. of machines CPU Mem. | Disk speed | Storage
(GHz) (GB) (rpm (GB)
2x P4-24 4 SCSI 10 000 | 5x 73
1xP4-24 1.5 IDE 7 200 2 x 180
2x P4-24 2 IDE 7 200 5 x 250
2 x P3-1.26 SCSI 15 000 | 2x 18
2 x P3-1.26 4 SCSI 10 000 | 5x 73

—_

QU = W N =
—_ = DN R

Table 6.1: Hardware used to support crawling experiments.

Versus Content Manager. Section 6.3 describes applications of the Webhouse

prototype. Finally, Section 6.4 draws the conclusions of this validation.

6.1 Crawler evaluation

This section presents the results obtained from experiments performed while har-
vesting the Portuguese Web with the VN crawler. These crawls ran in June
and July, 2005, with the purpose of evaluating the crawler’s performance. The
analysis of the results enabled the detection of bottlenecks, mal-functions and
helped on tuning the crawler’s configuration according to the characteristics of

the harvested portion of the web.

6.1.1 Experimental setup

Table 6.1 summarizes the hardware configurations of the nine machines used to
support VN in the experiments. For instance, a machine with Configuration 1
had two Pentium4 processors running at 2.4 GHz, 4 GB of memory and five SCSI
disks running at 10 000 rotations per minute, each one with 73 GB of storage
space. All the machines use the RedHat Linux operating system with kernel
version 2.4. The machine with Configuration 5 hosts the Global Frontier and the
remaining host CNodes. The machines were inter-connected through a 100 Mbps
Ethernet and accessed the Internet through a 34 Mbps ATM connection shared

with other customers of the data center where they were hosted.

140

6.1 Crawler evaluation

VN was configured to use the home page policy and gather contents from
several media types convertible to text. It collected statistics for web characteri-
zation, stored original contents for archival and extracted texts for indexing. The
thresholds that prevent VN from getting trapped in hazardous situations were

determined based on the obtained model for the Portuguese Web (see Chapter 3):

e At most 5 000 URLs were crawled per site;

The URL depth was limited to five;

The size of the contents was limited to 2 MBs;

There was a limit number of 10 duplicates per site, 60 seconds to download
each content and 200 characters for the URL length;

The Crawling Processes were considered dead and restarted by the Watch-

dogs if they remained inactive for more than five minutes;

A courtesy pause of two seconds between requests to the same site was
respected. Users frequently visit subsequent pages with a time gap of one
second (Cockburn & McKenzie, 2001) and a page contains on average 20 em-
bedded images that must also be downloaded (Jaimes et al., 2003; Marshak
& Levy, 2003; Wills & Mikhailov, 1999). Assuming that a browser executes
these downloads sequentially, the time interval between its requests to the
server is just 0.05 seconds. Based on these results, the defined courtesy

pause for VN imposes less load on the web servers than human browsing.

6.1.2 Performance comparison

This Section presents a performance comparison based on the results published in
related work. Table 6.2 summarizes these results. This comparison must be taken
with a grain of salt because the experiments were run using different setups and
in different periods of time. Results gathered on different periods of time require
different interpretations because the web is permanently evolving. For instance,
the Googlebot in 1998 harvested 34 pages per second and VN harvested 25 pages

per second, in 2005. However the size of web pages has grown and 34 pages in

141

6. VALIDATION

Crawler Number of | Internet | Nr. downloads Data % downloads | Simulation
name machines (Mbps) /second KB/s dups. /URLs results
Googlebot 5 ? 34 200 ? 31% No
Kspider 1 8 15 360 ? 92% No
Mercator 4 100 112 1682 8.5% 87% No
Polybot 4 45 77 1030 13% 85% No
Ubicrawler 5 116 ? ? ? ? Yes
VN 9 34 25 738 7% 80% No
WebBase 1 1 000 6 000 111 000 ? ? Yes
Webgather 4 ? 7 ? ? ? No

Table 6.2: Performance comparison between crawlers.

1998 corresponded to 200 KB of data, while 25 documents in 2005 corresponded
to 768 KB. The usage of simulations that can be reproduced for different crawlers
is too restrictive, because they cannot reproduce the upcoming hazardous situa-
tions on the web that degrade the crawler’s performance in practice. Simulations
cannot realistically test the robustness of the crawlers or if their actions are in-
commodious to web servers. The download rate of a crawler while harvesting the
real web tends do be significantly lower than the one obtained on simulations.
The developers of the GGooglebot estimated that it could execute 100 downloads
per second (600 KB/s) but in practice it did not surpass 34 downloads per sec-
ond. The performance of the Kspider was initially measured by crawling a fixed
set of 400 000 URLs and the obtained results suggested that the crawler could
download 618 pages per second (6MB/sec.) using four machines. However, the
results obtained from a crawl of eight million pages from the Thai web suggest
that the download rate would have been of just 232 downloads/sec using four
machines. The WebBase crawler achieved an outstanding performance of 6 000
downloads per second. However, the harvested documents were not written to
disk and the paper suggests that the pages were harvested from sites accessible
through a 1 Gbps LAN.

Nonetheless, VN’s performance while crawling the Portuguese web was com-
pared with the results presented in previous studies. Its performance is close to
the one presented by other crawlers but it was hosted on a larger number of ma-
chines (nine). However, VN had the additional overhead of extracting and storing
meta-data during the crawl. The speed of the connection to the Internet must

be considered to analyze crawling performance. The 3"¢, 4" and 5" columns of

142

6.1 Crawler evaluation

Table 6.2 show that the most performant crawlers used the fastest connections to
the Internet. So, this might be also a reason why VN presented a lower download
rate than the most performant crawlers.

The performance of a crawler is usually synonymous of its download rate,
but there are other features that should be considered. The %dups. column of
Table 6.2 presents the percentage of duplicates harvested by the crawlers. The
results show that the efforts to minimize the download of duplicates, saving on
bandwidth and storage space, yield good results in practice. VN crawled the
smallest percentage of duplicates (23% of the contents were duplicates in its first
release). A crawler should also minimize the number of visits to URLs that do
not reference a downloadable content. The downloads/URLs column of Table 6.2
presents the ratio between the number of downloads and the URLs visited. VN
was configured as a focused crawler of the Portuguese web and discarded contents
considered irrelevant. However, the ratio of downloads/URLs is close to the one

achieved by the remaining crawlers, which did not discard any contents.

6.1.3 Bottlenecks

The Global Frontier is the central point of coordination of VN. So, it is a potential
bottleneck that may compromise the scalability of the crawler. The scalability
of the VN architecture was tested by measuring the number of downloads and
amount of data crawled within 24 hours, with an increasing number of Crawling
Processes spread across several machines. A new machine hosting 20 Crawling
Processes was added to the cluster daily. Figure 6.1 presents the obtained results.
VN scaled until 160 Crawling Processes executing 2 169 831 downloads in one
day (63 GB). This shows that the architecture is scalable and the Global Frontier
is not a bottleneck within the observed range.

The duration of the main operations executed during the crawl and the load
they imposed on the underlying operating system and hardware were also moni-
tored. The objective of these experiments was to detect bottlenecks in the compo-
nents of VN. The experimental setup was composed by 4 machines with Configu-

ration 2. Each one hosted an increasing number of Crawling Processes. Figure 6.2

143

6. VALIDATION

25 7 90
80
—~ 2 £
g 70
2 - 60
€ 15+ - 50 8 —a— Downloads
) < —®Data
g +40 &
S 17 ks
g + 30
s} i + 20
- 05
+ 10
0 1 1 1 0

1 20 40 60 80 100 120 140 160

Site Crawlers

Figure 6.1: Scalability of the download rate with the addition of new CNodes.

—a— Downloads
—m— Data

downloads
(thousands)
data (GB)

0 1 1 \
1 10 20 30

Site Crawlers

Figure 6.2: Data downloaded vs. Number of Crawling Processes per CNode.

144

6.1 Crawler evaluation

100% -~ i
90%
80% - B StoreText
- 70% ~ M StoreOriginal
& 60% -
& mpP i
@ 50% - rocessing
S
3 40% ODownload
30% ~
20% - OCourtesyPause
10%
0%

1 10 20 30
Site Crawlers

Figure 6.3: Duration of the operations.

presents the amount of data crawled within 24 hours by each set of Crawling Pro-
cesses. The download rate increased from 1 to 10 Crawling Processes. The system
tools indicated that the CPU of the machine was exhausted at this point. How-
ever, the number of downloads still increased until 20 Crawling Processes. For
30 Crawling Processes there is a clear performance degradation. The Watchdogs
were monitored to detected if dead Crawling Processes considered dead (those
inactive for more than five minutes) due to resources starvation caused by the
operating system scheduler but no relation between the events was found.
Figure 6.3 shows the average duration of the operations executed by the Crawl-
ing Processes. The StoreOriginal and StoreText series present the time spent to
store the contents and the corresponding extracted texts in the Volume. The
Processing series includes parsing of pages, check-operations, interpretation of
the Robots Exclusion Protocol (REP) and meta-data extraction. The Download
series includes the establishment of a connection to a web server, the download of
the header and content. Before executing a request to a site, the CP checks that

the configured courtesy pause of two seconds was respected. If it was not, the CP

145

6. VALIDATION

Number | Nr. of WR requests | Avg. queue length Avg. time (ms) Nr. of sectors
of CPs p/second of the requests for requests to written p/sec.
(w/s) (avgqu-sz) be served (await) (wsec/s)
1 0.5 0.2 36.2 17.2
10 22.6 10.9 410.4 409.4
20 39.7 49.7 811.2 667.7
30 48.0 92.9 1299.8 821.3

Table 6.3: Disk I/O analysis of the Volume using iostat. The name of the
column on the iostat report is presented in parenthesis.

sleeps for the remaining time, yielding its execution. The CourtesyPause series
represents the time elapsed since the CP decided to sleep until it was executed
again. The results show that with one CP running on a machine, most of the
time is spent on Download operations and executing the CourtesyPause. The
percentage of time spent in the storage operations was 1.2%. However, the load
of the storage operations increased along with the number of Crawling Processes.
For 30 Crawling Processes, the storage operations spent 64.8% of the execution
time.

Table 6.3 presents an analysis of the disk accesses. It shows that the disk
throughput could not cope with the load imposed by the Crawling Processes.
The size of the queue of the requests waiting to be served (3"¢ column) grew as
the number of requests issued to the device increased (2" column). Surprisingly,
it was observed that the time spent in the CourtesyPause increased to 40.8%
until 20 Crawling Processes and then dropped to 4.6% for 30 Crawling Processes.
The reason for this phenomenon is that when a machine hosts just one CP,
the operating system executes the CP immediately after the courtesy pause is
reached. However, the time that a CP waited to be executed after performing
the courtesy pause increased with the load on the machine because there were
other processes scheduled to run before it. For 30 Crawling Processes, the average
time for requests to be served was 1.2998 seconds, a value close to the configured
courtesy pause of two seconds. Hence, the time elapsed between two requests due
to disk latency to the same site frequently achieved two seconds and the Crawling
Processes did not need to execute courtesy pauses.

The Processing operations use mainly the CPU and access data kept on mem-

ory without requiring disk accesses. Hence, they were not significantly affected

146

6.1 Crawler evaluation

500
450
400
350
- 300
- 250
- 200
150
100
50

—a— Downloads
Data

downloads (millions)
data (GB)

Figure 6.4: Evolution of a Portuguese-web crawl.

by the load imposed on the machines. The obtained results show that disk access
became a bottleneck in the crawler before bandwidth was exhausted. The conclu-
sion it that designing a crawler to be deployed on cheap hardware requires addi-
tional attention to optimizing disk accesses. I believe that the storage throughput
could be improved by using an alternative implementation of the Volumes that
would cache larger blocks of data in memory and wrote them sequentially to disk.

However, this approach would require the usage of additional memory.

6.1.4 Robustness

The robustness of a crawler is measured by the number of pages downloaded over
a large period of time. A crawler may achieve an outstanding download rate
in one day and do not crawl a single content on the next, because it crashed
due to some unexpected problem. VN was set up to execute a complete crawl
of the Portuguese Web to evaluate its robustness. The crawl was bootstrapped
with 152 000 seeds generated from a previous crawl. There were 140 Crawling
Processes hosted across seven machines.

Figure 6.4 represents the evolution of the crawl. VN collected a total of 10.3
million contents totalling 299.3 GB in eight days. During the crawl several prob-

147

6. VALIDATION

File Tool OK | Conversion | Timeout | Max. | Type not | 404 | Other

extension error size allowed

.ppt, -pps xlhtml 19% 54% 1% 15% 1% 9% 2%
xls xlhtml 19% 60% 13% 1% 0% 6% 1%
tf unrtf 25% 33% 2% 1% 0% 38% 1%
swf webcat 36% 53% 1% 0% 5% 4% 1%
.doc antiword 54% 33% 2% 1% 0% 8% 2%
.ps ghostscript | 59% 6% 25% 3% 0% 5% 2%
.pdf xpdf 74% 8% 1% 1% 1% 7% 2%
txt - 90% 0% 5% 0% 0% 4% 1%

html, htm webcat 94% 0% 0% 0% 0% 4% 2%

Table 6.4: Analysis of text extraction efficiency.

lems occurred on the machines, like operating system crashes, which required
reboots or disks that ran out of space. However, the crawl never stopped. VN
crawled on average 1.1 million contents per day (37.2 GB) and the peak down-
load rate achieved was 1 734 573 contents (53.2 GB). Figure 6.4 shows that the
download rate started to decrease on day 7. The reason for this fact is that VN
was configured to crawl first the sites referenced by the seeds and then begin the
expansion phase. In this phase, it harvests new sites found through URL ex-
traction to expand the boundaries of the Portuguese Web. The number of pages
matching the selection criteria falls sharply once the crawler enters the expansion
phase because most of the pages visited outside the .PT domain were not written
in the Portuguese language (79%).

The obtained results show that VN presented a steady download rate before
the expansion phase, which validates its robustness to hazardous situations on

the web as well as operational problems that occurred on the underlying system

setup.

6.1.5 Text extraction

VN extracted texts from the harvested contents and classified them to determine if
they match the selection criteria (written in the Portuguese language). However,
VN could not extract text from the 37% of the contents that were not in the
HTML format. The objective of this experiment was to measure the effectiveness

of the tools used to extract text from these contents and detect the reasons for

their failure.

148

6.1 Crawler evaluation

Table 6.4 describes the file extension of the contents, the tool used to ex-
tract text from them, the percentage of contents successfully converted to text
and the identified causes of failure. The text extraction process mostly failed
for the contents in proprietary formats. Only 19% of the Microsoft Powerpoint
presentations (.ppt, .pps) and Microsoft Excel worksheets (.xls) were successfully
converted to text. One reason for this is that the owners of the formats frequently
release new versions for commercial purposes and the conversion tools used by
the VN crawler could not extract text from the most recent versions. The column
timeout shows that 25% of the postscript contents (.ps) and 13% of the Microsoft
Excel worksheets (.xls) could not be converted to text within one minute. The
column maz. size presents the percentage of the contents that were larger than
the configured limit of 2 MB. Most of the files were smaller than this limit but
15% of the Powerpoint presentations were larger. These files are large because
they usually contain many illustrations. The type not allowed column shows that
5% of the files with extension .swf were not identified by the web servers with
the expected media type application /x-shockwave-flash, 32% of these files did not
return any type on the Content-Type header field, 56% returned the media type
application/octet-stream and the remaining 12% presented other media types.
The MIME specification states that the media type application/octet-stream is
to be used in the case of uninterpreted binary data, in which case the simplest
recommended action is to offer to write the information into a file for the user
(Freed & Borenstein, 1996b). Hence, this media type does not seem adequate for
flash movies, which must be interpreted by a specific software and are written
following a proprietary format.

The conclusion is that VN requires more efficient tools for extracting text from
contents in proprietary formats. However, there are still contents that cannot be
converted to text because their web servers provide erroneous identifications for
their media types. When a crawler is setup to execute an exhaustive crawl of
contents with different media types, the limit thresholds should be configured
according to each media type. For instance, the maximum size allowed for Pow-

erpoint presentations should be higher than for HTML pages.

149

6. VALIDATION

Parameter Limit % Sites | % URLs
Nr. of duplicates | 10 duplicates 1.6% -
Nr. of URLs 5000 URLs 0.8% -

URL depth) 11.3% -
Download time 60 seconds — 0.4%
Size 2 MB — 0.1%
URL length 200 characters - 1%

Table 6.5: Percentage of sites and URLs that exceeded limit values.

6.1.6 Tuning thresholds

A portion of the web presents specific characteristics and a crawler should be
tuned to improve its performance according to them. On the previous experi-
ments, VN was configured with limit values for several parameters to avoid haz-
ardous situations. Periodically, these thresholds must be reviewed and updated
to reflect the evolution of the web. However, the decision to update requires
human reasoning. If the limits were achieved due to hazardous situations they
should not be updated.

Table 6.5 describes the limits imposed and the percentage of URLs or sites
whose crawl was stopped by reaching one of the limits. The maximum number of
duplicates was overcome by 1.6% of the sites. A sample of 10 of these sites was
humanly analyzed and they all contained spider traps. The number of sites that
contained more than 5 000 URLs was just 0.8%, which confirms previous findings
(Brandman et al., 2000). The maximum depth was achieved in 11.3% of the sites.
A visit to a sample of these sites revealed that the limit depth was not related to
any hazardous situation. Hence, this threshold should be updated. The results
obtained by Liu (1998) suggested that the timeout of a web client should not
be longer than 10 seconds. Table 6.5 shows that only 0.4% of the Portuguese
URLs took longer than 60 seconds to be downloaded and processed to extract
meta-data. These results suggest that the performance of the crawler could be
improved by reducing the timeout value, without excluding valid contents. Only
0.1% of the contents achieved the maximum size of 2 MBs and just 1% of the
URLs were longer than 200 characters.

150

6.2 Versus content management

In a nutshell, the conclusion derived from this experiment is that the limits
for most of the parameters were adequate, except for the maximum URL depth,

which should be increased on subsequent crawls of the Portuguese Web.

6.2 Versus content management

Web Warehouses require storage systems able to address the specific character-
istics of web collections. One peculiar characteristic of these collections is the
existence of large amounts of duplicates. The Versus Content Manager was de-
signed to efficiently manage duplicates through a manageable, lightweight and
flexible architecture, so that it could be easily integrated in existing systems.
This section presents the results gathered from four experiments ran on the
Content Manager against NFS. These replicate its application in several usage
contexts. NFS was chosen as baseline, because it is widely known and accessible,

enabling the reproducibility of the experiments.

6.2.1 Experimental setup

The experimental setup consisted on Pentium4 at 2.4 GHz machines with Red
Hat Linux 9.0. The disks were IDE ATA 100, 7200 rpm, managed by a software
RAID 5 controller. Clients in Java were developed for each one of the experiments.
The Content Manager clients executed the operations through the invocation of
methods available in the APT library and the NF'S clients used the JDK IO library
to execute equivalent operations on a remote directory mounted on the local file
system. The data set used in the experiments was composed by 1 000 distinct
HTML pages with a total size of 19.2 MB gathered from a previous crawl of the
Portuguese Web.

6.2.2 Retrieving

In this experiment, a Versus Content Manager volume server was loaded with the
pages from the data set and all the generated contentkeys were kept. Then, these
contentkeys were split among the clients that retrieved the corresponding contents

from the Content Manager in parallel. In each measurement, a new machine

151

6. VALIDATION

25

" 20

S 15 == NFS

3

g 10

v g Content

Manager

O T T T T T T

1 5 10 15 20 25 30 35

number of clients

Figure 6.5: NFS read vs. Versus Content Manager retrieve.

hosting five clients was added to stress the server. For the NFS test, an equivalent
procedure was followed: the files were stored keeping the corresponding paths and
the clients were launched to read them in parallel. Before each measurement, the
NF'S volumes were re-mounted to prevent caching of the files.

Figure 6.5 presents the total time that the clients took to read all the contents.
The results show that the Content Manager is on average 68% faster than NF'S for
read operations. The total time for executing the task remained constant for more
than 10 parallel clients with the Content Manager and more than five clients with
NFS, which shows that the NFS server exhausted its response capacity sooner

than the Content Manager volume server.

6.2.3 Deleting

The data set was loaded into the Versus Content Manager and NFS volumes and
the references to the contents were split among the clients, as described in the
previous experiment. First, the clients were launched in parallel to delete the
contents from the data set. Then, the data set was loaded twice in the Content
Manager to create a situation where all the contents stored were duplicates and
the clients were relaunched to delete them.

Figure 6.6 compares the total time that the clients took to delete the con-
tents. The Content Manager is on average 67% faster than NFS when deleting
duplicates because only the reference counter is decremented in this case. When
deleting the block it is 60% faster than NFS. T believe that the Content Manager

outperforms NFS because it uses a lighter protocol of communication and does

152

6.2 Versus content management

g T

6 o . —o—NFS

E
S —A— Block delete
o 4 Duplicate delete
\A—A—A_‘__‘—‘
2 il — I S S
0 T T T T T T 1

1 2 3 4 5 6 7 8

number of clients

Figure 6.6: NFS remove vs. Versus Content Manager delete.

not have the overhead of maintaining caches of files and associated meta-data,
such as permissions. Both the NFS and Content Manager servers reached their

maximum throughput with 10 clients.

6.2.4 Storing

The data set was split among the clients that stored it in the Versus Content
Manager and NF'S. For each set of clients, the data set was stored twice in the
Content Manager to compare the times spent creating blocks to store new con-
tents against adding references to duplicates. The NF'S volume was exported with
the sync option, which does not allow the server to reply to requests before the
changes made by the request are written to disk (same behavior as the Content
Manager). The experiments on NFS had to be restarted several times due to
crashes of the Java Virtual Machines that were running the clients. The causes
of this problem could not be exactly determined, but as this situation never oc-
curred with the Content Manager clients, I suspect that the crashes were due to
an incompatibility between the JDK IO library and NFS.

Figure 6.7 presents the total times spent storing the contents in Content Man-
ager and NFS. As expected, the store operation is faster for storing duplicates

than for storing new contents, because they are not transferred from the clients

153

6. VALIDATION

“ —o—NFS
§ —— 1st store
o 2nd store

1 5 10 15 20 25 30 35

number of clients

Figure 6.7: NFS save vs. Versus Content Manager regular store.

35
30
25 - —B-NFS
S 207 —e—Force New
o 15 ¢
o 10 A ——— Compare
54 Regular
0 T T T 1
0% 20% 40% 60% 80%

duplication

Figure 6.8: Time spent to store the data set presenting increasing levels of
duplication.

to the volume servers and the creation of new blocks is not required. For du-
plicates the Content Manager outperformed NFS by 82%. For the new ones, it
outperformed NFS on average by 50%, from 5 to 20 clients. However, it seems to
reach its saturation point at 15 clients, while NFS stands 25 clients. The reason
for this is that as the Content Manager is faster than NF'S, it reached the server’s

disk throughput peak performance earlier as the number of clients rose.

154

6.3 Webhouse applications

6.2.5 Semantics of the store operation

The objective of this experiment was to measure the performance of the three
different modes available for the store operation: reqular, compare and force-new.
The level of duplication was gradually increased by 20% within the data set and
10 clients were launched. Each client stored the data set using in turn each one
of the three modes.

Figure 6.8 presents the obtained results. The semantics of the force-new
mode is similar to the NFS write operation, given that it does not put any effort
in eliminating duplicates. However, it took almost half of the time to finish
the task. As the level of duplication increased, the compare and regular modes
presented the best results. The compare mode is slower than the regular, because
it avoids fake duplicates through bytewise comparison, while the regular mode
compares only the sizes of the contents. When there was not replication within
the data set, all the three modes performed the same way. The conclusion is that
the overhead of detecting duplicates within a volume is insignificant. Besides
saving disk space, this experiment showed that the proposed mechanism for the
elimination of duplicates increases the storage throughput of the system when it

manages collections containing duplicates.

6.3 Webhouse applications

This section describes the main applications of Webhouse, covering the features
and operation of the tumba! search engine. It also describes how Webhouse
was used in several other research experiments, discusses selection criteria to
populate a national web archive and describes the use of Webhouse in a web

archive prototype.

6.3.1 The tumba! search engine

The lack of context in queries to global search engines causes that users in different
communities expect different results for the same query (Silva, 2003). Tumba! is
a search engine designed and developed by the XLDB Group of the University of

Lisbon (x1db.fc.ul.pt). Its main objective is to provide better search results

155

xldb.fc.ul.pt

6. VALIDATION

to the users of the Portuguese Web, by using information sources about Portugal
and applying knowledge about the characteristics of the Portuguese Web contents
in the design of the system.

In November, 2002 the tumba! search engine was released to the public as a
free public service (available at www.tumba.pt). The service has been improved
and maintained by graduate students of the research group. Tumba! supports

several features besides finding the pages that contain a given term:

Advanced search. Tumba! supports several operators that enable the combi-
nation of several words in a query, so that users can submit more expressive
queries. It supports exact searches to find pages that contain a specific
phrase, site searches that enable the restriction of the search to a given

domain and Boolean operators among search terms;

Content properties. Each indexed content has associated meta-data required
by the search engine. Some of these meta-data can also be accessed by the
tumba! users. For instance, users can access the stored version of a content

(cache) and find the pages that link to and from it;

Related pages. This service provides a ranked list of pages, related to a content
(Martins, 2004);

Clustering. Some query terms are vague or have several different meanings.
The clustering feature groups search results in categories so that users can
choose which ones stratify best their information needs (Martins & Silva,
2003);

Geographical searches. There are pages on the web that have information
about geographical locations. Tumba! identifies the geographical scope of
pages and enables searching within a geographical location, such as, finding

the home page of a traditional food restaurant in Lisbon (Silva et al., 2006);

Mobile device interface. A simpler search interface adapted to devices such as
WAP phones or PDAs. This feature is specially useful to help users finding

pages of services close to their location (Freitas et al., 2006);

156

www.tumba.pt

6.3 Webhouse applications

help | advance.

=

Bearch the Partuguase

Search terms: Fernando + Pessoa

Results: Documents 1 to 25 of 73.048. Search over 10.273.292 documents in 0,188 seconds.

Search tip: Use the '-' operator to search documents that DO NOT contain a given term.

Fernando Pessoa (new window) Biblioteca Nacional
Fernando Pessoa Pagina Inicial A Vida A Obra Estudos Testemunhos Noticias Pessoa na Web A minha
P Py P P g Consulte a Base Nacional de Dados
patria € a lingua portuguesa Mapa do Sitio Ficha Técnica | Direitos de Autor @ 1998-2005 Instituto Bibliograficos (PORBASE) para mais
Cambes informagdes sobre o autor: Fernando
| inlinks | outlinks | cache | search in www.instituto-camoes.pt Pessoa,
Fernando Pessoa na Web (new window) Topics in
Fernando Pessoa na Web Pagina Inicial Voltar a Fernando Pessoa Navegar é preciso, viver Fernando + Pessoa
ndo é preciso Casa Fernando Pessoa Universidade Fernando Pessoa Centro de Estudos
Fernando Pessoa Association Frangaise 1. fernando

| inlinks | outlinks | cache | search in

1. Fernando Pessoa
2. queira
1. Fernando

Pessoa(English

weww instituto-camoes.pt

FERNANDO PESSOA (new window) Version
> FERNANDO PESSOA FERNANDO PESSOA Nasceu em Lisboa a 13 de Junho de 1888 e ocultou-se a 2. Fernando
maior parte dos 47 anos de vida sob as identidades de Ricardo Reis, Alberto Caeiro, Alvaro de Campos e Pessoa
Bernardo Soares. 3. prince

| inlinks | outlinks | cache | search in www.lerparaver.com 1. Fernando

Pessoa
Casa Fernando Pessoa (new window) 2. Fernando
Casa Fernando Pessoa > Portugués English Francais Portugués English Frangais Pessoa - Poema
| inlinks | putlinks | cache | search in www casafernandopessoa.com em linha reta

2 Fernandn

Figure 6.9: Tumba! web interface.

Query spell-checker. Misspelled words are common in queries to search en-
gines. The spell-checker selects the best choice among the possible correc-
tions for a misspelled term and suggests it to the users (Martins & Silva,
2004a);

Connection to external tools. Tumba! is connected to external services that
complement its searching features. Users can access free online dictionaries
of Portuguese, hear the pronunciation of terms (a cooperation with INESC’s
L2F group) or find publications of Portuguese authors in a database of the
National Library (Borbinha et al., 2003).

Figure 6.9 presents an example a search result provided by tumbal. Users
submit the search terms in a web form. They can use advanced search operators
to relate several terms and choose if they want to receive clustered results by
ticking the check-box next to the form box. The page titles and the snippets of
the pages where the search terms occur are presented on the left side of the results
page. Bellow each snippet the users can follow links that enable the access to the
content properties or related pages. On the right side of the results page there
are presented links to the National Library database, geographical and clustered

results.

157

6. VALIDATION

User Interface

Web Retrieval and Mining
Applications

SIDRA
Indexing + Ranking
Engine

Advanced Mobile
Search Search

Web Warehouse y
Term Geo-scope Inter_ d(_)cu_ment Related
Search Assigner Similarity Pages
Webhouse Engine

Meta-data
Reader

Geographical

Clusters
Search

Content
Properties

Figure 6.10: Webhouse role in the tumba! search engine.

Figure 6.10 presents the architecture of the tumba! search engine. Webhouse
is one of its main components. It is responsible for harvesting the contents from
the Portuguese Web, store them along with the correspondent meta-data and,
after each crawl is finished, provide access to all the web mining applications that
process the stored data. For instance, the SIDRA system accesses the web data
to build indexes that enable quick searches (Costa, 2004). The models derived
for the Portuguese were also applied in the ranking algorithms to provide better
search results. The Geo-scope assigner processes the text extracted from each
content to derive its geographical scope.

The tumba! search engine was a valuable test bed for Webhouse validation, be-
cause it has several applications with different web data processing requirements.
Tumba! ran with success for three years using several releases of Webhouse. On
average it provided around 4 000 searches per day and its users came from all the

world, but mainly from Portugal and Brazil.

6.3.1.1 Supporting research experiments

The data gathered during the development of Webhouse and the system itself were
used as experimental platform to support research in other fields. The WPT03

158

6.3 Webhouse applications

is a textual corpus compiled from the Portuguese Web using Webhouse (Cardoso
et al., 2005¢). The main objective of the creation of this corpus is to provide
an experimental test collection to be used in Natural Language Processing. The
WPTO03 package also includes tools to facilitate the automatic processing of the
data and a query log from the tumba! search engine compiled during six months.

The WPTO03 corpus was used in several research studies, contributing to:

e The execution of a statistical study of linguistic metrics of the Portuguese
contents (Martins & Silva, 2004b);

e The creation of a database containing lexicon tables that can be used in
the construction of gazetteers, finding semantically related elements and
implementing word-sense disambiguation techniques based in clustering al-
gorithms (Sarmento, 2006);

e The identification of geographical entities on the Portuguese Web (Santos
& Chaves, 2006);

e The evaluation of web partitioning methods based on geographical criteria
to distribute URLs in a distributed crawler (Exposto et al., 2005);

e The evaluation of a question answering system (Costa & Sarmento, 2006).

A new corpus containing data gathered with Webhouse in 2005 (WPTO05) is
scheduled for release in 2007.

The Cross-Language Evaluation Forum (CLEF) initiative aims to support
the development and enhancement of digital library applications that support
European cross-language retrieval (DELOS, 2006). It has been organizing system
evaluation campaigns annually since 2000, creating test-suites that enable system
benchmarking and stimulating collaboration between researchers. Each campaign
is composed by several tasks directed to evaluate different type of systems. The
CLEF organization provides a test collection to the participants and they load it
to their systems to perform the designated task. In the end, the results obtained
by each system are compared and published. The XLDB Group has been using
Webhouse has experimental platform to store and access the test collections of
CLEF tasks since 2004:

159

6. VALIDATION

Ad hoc. This task aims to evaluate system performance on a multilingual col-
lection of plain text news documents but the participants can also choose
to participate on monolingual subtasks. The XLDB Group participated in
the mono and bilingual tasks to evaluate several components of the tumba!
search engine (Cardoso et al., 2004, 2005a, 2006);

WebCLEF. This task uses a test collection built through the crawl of govern-
mental sites in Europe (EuroGOV collection) to evaluate retrieval systems
in a web environment. The XLDB Group participated in this task and
detected problems with the EuroGOV collection that may have influenced

the evaluation results (Santos & Cardoso, 2005);

GeoCLEF. Geographical Information Retrieval systems (GIR) retrieve informa-
tion considering spatial awareness. GeoCLEF aims to evaluate these sys-
tems in a multi-lingual environment. The XLDB Group has participated in
this task since its first edition in 2005 (Cardoso et al., 2005b; Martins et al.,
2006). Besides providing a experimental platform for this task, Webhouse
provided data about the Portuguese Web that contributed to the generation
of a geographic knowledge base and the creation of the first geographical
ontology for Portugal (Chaves et al., 2005).

6.3.2 The Tomba web archive

Never before in the history of mankind so much information was published. How-
ever, it was never so ephemeral. Web documents such as news, blogs or discussion
forums are valuable descriptions of our times, but most of them will not last longer
than one year (see Chapter 4). If the current contents are not archived, the fu-
ture generations could witness an information gap in our days. The archival of
web data is of interest beyond historical purposes. Web archives are valuable
resources for research and could also provide evidence in judicial matters when
offensive contents are no longer available online.

The archival of conventional publications has been directly managed by human
experts, but this approach cannot be directly transposed to the web, given its

size and dynamics. I believe that web archiving must be performed with minimal

160

6.3 Webhouse applications

human intervention, but this is a technologically complex task. The Internet
Archive collects and stores contents from the world-wide web. However, it is
difficult for a single organization to archive the web exhaustively while satisfying
all needs, because the web is permanently changing and many contents disappear
before they can be archived. As a result, several countries are creating their own
national archives to ensure the preservation of contents of historical relevance to
their cultures (Day, 2003).

Conceptually, a web archive is an instance of a WWh. Tt harvests and stores
large collections of contents gathered from the web and provides access to them.
However, a web archive requires specific selection criteria to collect contents of
historical relevance that must be preserved for long periods of time. This section
discusses strategies for selecting contents for a national web archive and presents
a system’s architecture based on Webhouse. This architecture was validated
through a prototype named Tomba that was loaded with a total of 57 million
contents (1.5 TB) gathered from the Portuguese Web during 4 years.

6.3.2.1 Selection criteria for historical relevance

Web archivists define strategies to populate web archives according to the scope
of their actions and the resources available. An archive can be populated with
contents delivered from publishers or harvested from the web. The delivery of
contents published on the web works on a voluntary basis in The Netherlands,
but it is a legislative requirement in Sweden (National Library of Australia, 2006).
However, the voluntary delivery of contents is not motivating for most publishers,
because it requires additional costs without providing any immediate income. On
the other hand, it is difficult to legally impose the delivery of contents published
on sites hosted on foreign web servers, outside a country’s jurisdiction. The
absence of standard methods and file formats to support the delivery of contents
is also a major drawback, because it inhibits the inclusion of delivery mechanisms
in popular publishing tools. Alternatively, a web archive can be populated with
contents periodically harvested from the country’s web. However, defining the
boundaries of a national web is not straightforward and the selection policies are

controversial.

161

6. VALIDATION

The broad selection criteria adopted for the tumba! search engine (see Chap-
ter 3) may not be adequate to populate a national web archive. The main objec-
tive of a search engine is to provide relevant and up-to-date results to its users
and not to preserve data for historical purposes. A search engine can adopt
broad selection criteria that include many irrelevant contents because used rank-
ing mechanisms exclude those contents from search results. A search engine has
storage requirements less demanding than a web archive because its web collec-
tion is periodically refreshed and the old contents are discarded. On its turn, a
web archive builds its web collection incrementally and must adopt a narrower se-
lection criteria to select contents with historical relevance and save storage space.

An experiment was performed to discuss alternative selection criteria for a
national web archive. A crawl of 10 million Portuguese contents performed for
the tumba! search engine in July, 2005 was used as baseline to compare various
selection policies. The analyzed selection criteria were derived from controversial

subjects among the web archiving community.

Exclude Blogs. Blogs have been introduced as frequent, chronological publica-
tions of personal thoughts on the web. Although the presence of blogs is
increasing, most of them are rarely seen and quickly abandoned. According
to a survey, "the typical blog is written by a teenage girl who uses it twice
a month to update her friends and classmates on happenings on her life"
(Perseus Development Corp., 2004), which hardly matches the common re-
quirements of a document with historical relevance. On the other hand,
blogs are also used to easily publish and debate any subject, gaining popu-
larity against traditional sites. Blogs that describe the life of citizens from
different ages, classes and cultures will be an extremely valuable resource

for a description of the current times (Entlich, 2004).

A site was identified as a blog in the baseline if it contained the string "blog"
on the site name. The obtained results showed that 15.5% of the contents
in the baseline would have been excluded from a national web archive if
Blogs were not archived. 67% of the blog contents were hosted under the
.COM domain and 33% were hosted on blogs under the .PT domain.

162

6.3 Webhouse applications

4%1%

%

o.pPT

l.COM
51% O.NET

O.0RG

B Others

Figure 6.11: Distribution of contents per domain from the Portuguese Web.

Country code Top Level Domains. There are two main classes of top-level
domains (TLD): generic (gTLDs) and country code (c¢TLDs). The gTLDs
were meant to be used by particular classes of organizations, such as .COM
for commercial organizations, and are administrated by several institutions
world wide. The ccTLDs are delegated to designated managers, who op-
erate them according to local policies adapted to best meet the economic,
cultural, linguistic, and legal circumstances of the country. Hence, sites with
a domain name under a ccTLD are strong candidates for inclusion in a na-
tional web archive. However, this approach excludes the contents related to
a country hosted outside the ccTLD. Figure 6.11 presents the distribution
of contents from the Portuguese Web per domain and shows that 49% of
its contents are hosted outside the ccTLD .PT. There were identified two
main reasons found for finding such a large amount of Portuguese contents
outside the ccTLD. The first is that the gTLDs are cheaper and faster to
register. The second is that most popular blogging sites are hosted under
the .COM domain, which increases the number of contents from a national
web hosted outside the country code TLD. For instance, Blogspot held 63%
of the Portuguese blogs.

Physical location of web servers. The RIPE Network Management Database
provides the country where an IP address was firstly allocated or assigned
(RARE, 1992). One could assume that the country’s web is composed by

163

6. VALIDATION

MIME avg size | %docs.
type (KB)
text/html 24 61.2%
image/jpeg 32 22.6%
image/gif 9 11.4%
application/pdf 327 1.6%
text/plain 102 0.7%
app’n/x-shockwave-flash 98 0.4%
app’n/x-tar 1,687 0.1%
audio/mpeg 1,340 0.04%
app’n/x-zip-compressed 541 0.1%
app’n/octet-stream 454 0.1%
other 129 1.8%

Table 6.6: Prevalence of media types on the Portuguese Web.

the contents hosted on servers physically located on the country. However,
the obtained results showed that only 39.4% of the IP addresses of the

baseline were assigned to Portugal.

Select media types A web archive may select the types of the contents it will
store depending on the resources available. Preservation strategies must be
implemented according to the format of the contents. For instance, preserv-
ing contents in proprietary formats may require having to preserve also the
tools to interpret them. The cost and complexity of contents preservation
increase with the variety of media types archived. Hence, web archivists
focus their efforts on the preservation of contents with a selected set of me-
dia types. Table 6.6 presents the coverage of selection strategies according
to the selected media types. 83 different media types have been identified.
However, a web archive populated only with HTML pages, JPEG and GIF

images would cover 95.2% of a national web.

Ignore robots exclusion mechanisms Web archives and search engines use
crawlers to gather contents, but publishers may forbid their harvesting
through the Robots Exclusion Protocol and ROBOTS meta-tag (Koster,
1994). Search engines present direct links to the pages containing relevant

information to answer a given query. Some publishers only allow the crawl

164

6.3 Webhouse applications

of the site’s home page to force readers to navigate through several pages
containing advertisements until they find the desired page, instead of finding
it directly from search engine results. One may argue that the public inter-
est of preserving history should overcome private interests and the archive
crawlers should ignore these exclusion mechanisms to achieve the maximum
coverage of the web. However, the exclusion mechanisms are also used to
prevent hazardous situations as discussed in Chapter 5. So, ignoring the

exclusion mechanisms may degrade the performance of an archive crawler.

The obtained results show that 19.8% of the Portuguese sites contained
the Robots Exclusion Protocol file (robots.txt), but they forbade the crawl
of just 0.3% of the URLs. 10.5% of the pages contained the ROBOTS
meta-tag but only 4.3% of them forbade the indexing of the page and 5%
disallowed the following of links. The obtained results suggest that ignor-
ing exclusion mechanisms does not significantly increase the coverage of a
national web crawl. However, this behavior may degrade the crawler’s per-
formance, because exclusion mechanisms are also used to prevent crawlers

against hazardous situations.

6.3.2.2 Architecture

Figure 6.12 describes the architecture of the Tomba web archive. The components

in grey are part of the Webhouse software package.

Gatherer. Collects contents and integrating them in the archive. The Gatherer,
composed by the Loader and the VN crawler, integrates web data in the
Repository. The Loader was designed to support the delivery of contents by
publishers and receive previously compiled collections of contents. Ideally,
VN would crawl a page and the referenced contents sequentially to avoid
that some of them become unavailable meanwhile. However, sequentially
crawling all the contents referenced by a page degrades the crawler’s per-
formance, as discussed in Chapter 5. Crawling the contents of one site at a
time in a breadth-first mode and postponing the crawl of external contents
until the corresponding sites are visited, is a compromise solution that en-

sures that the majority (71%) of the embedded contents internal to each

165

6. VALIDATION

Webhouse

Searcher

Gatherer Versus repository

Ty

Web

e
selection |:

criteria

Proxy navigation -
archived
data

User

- =

Page Flashback

Preserver
Replicator <:\I>

Archivist

Figure 6.12: Architecture of the Tomba web archive.

site are crawled in a short notice, without requiring additional bandwidth
usage (Marshak & Levy, 2003);

Versus repository. Stores the contents and their correspondent meta-data. The
general data model of the Catalog (see Chapter 5) was mapped to the con-
text of web archiving. The Source corresponds to an URL and a Version
corresponds to a crawl of the referenced content. Each Layer corresponds
to a crawl of the web. The Property lists keep meta-data about each Ver-
sion, such as the date of crawl or its media type. The Content references
the contents in their original format and the Facets are used to keep the
contents in obsolete formats in alternative up-to-date formats. There are
contents that can be used in the preservation of others. For instance, a page
containing the specification of the HT'ML format could be used in the future
to interpret contents written in this format. The Reference class enables
the storage of associations of these contents. Each new snapshot of the web
is kept in the Group Workspace during the crawl and then it is checked-in

into the Archive Workspace, where it is appended to the previous ones;

Preserver. Provides tools to manage and preserve the archived data. Repli-

166

6.3 Webhouse applications

cation is crucial to prevent data loss and ensure the preservation of the
archived contents. The replication of data across mirrored storage nodes
must consider the available resources, such as disk throughput and net-
work bandwidth. A new content loaded into the archive can be immedi-
ately stored across several mirrors, but this is less efficient than replicating
contents in bulk. Considering that an archive is populated with contents
crawled from the web within a limited time interval, the overhead of repli-
cating each content individually could be prohibitive. The Replicator copies
the information kept in a Volume to a mirror in batch after each crawl is
finished. The Dumper exports the archived data to a file using three alter-

native formats:

1. The WARC format, proposed by the Internet Archive to facilitate the

exportation of data to other web archives (Kunze et al., 2006);
2. An XML based format to enable flexible automatic processing;

3. A textual format with minimum formatting created to minimize the

space used by the dump file.

The dissemination of the archived contents as public collections is an indi-
rect way to replicate them outside the archive, increasing their chance of
persisting into the future. The main obstacles to the distribution of web
collections are their large size, the lack of standards to format them in order
to be easily integrated in external systems, and copyright legislation that
requires authorization from the authors of the contents to distribute them.
Obtaining these authorizations is problematic for web collections having
millions of contents written by different authors. The archived contents in
obsolete formats must be converted to up-to-date formats to maintain their
contents accessible. The Conwverter iterates through the contents kept in
the Repository and generates Facets containing alternative representations
in different formats. The Manager allows a human user to access and alter

the archived information;

Archivist. Human intervention must be minimized in web archiving. However,

it cannot be completely excluded. The Archivist is a human expert that

167

6. VALIDATION

Tomba /=== S
‘ ™ wers3o original

— ACQUIVO da Web POr TG 853

URL: wivw. fcm _ol:/

{+19/02/2006

| f{ Fundacio para s Computagan C 2 Nacional

»22/07/2005 H rcon | participacdo Internac | Docu

i+17/06/2005

H ! g 7 i* Pesquisar

i »27/05/2005 | orers & Fibra_optica liga Lisboa 3 Braga:? s00kmialcaminno. da &
i H cEdupT velocidade da luz 3

19»31/03/2005 H - 1pve G Concretizada migracio das escalas para banda larga " ° Pesquisa Avangads
03/07/2004 ocigapix " B-on cresce em contedos, utilizadores 2 servicos: novo portal, I* Hora Legal em Portugal
:+03/07/2004 i o servicos materias de diwigagde e incremento na formacds -

4 10/01/2004 i o Projectos & Esudios - 250 J‘mras e transmissda_am wdeo- -conteréncia 00127130

H | cEventos " CERT.PT; mais de 500 incidentes de sequranca informatica v

H ' idari. tratagk = "
1+01/04/2003 | = Rede Solidaria i i* Galendario

H { ©Legisiacao Mais de 17000 dominios novos tornam o .PT a dominio dos " "
v02/11/2002 o Recrutamenta Portugueses [4 evereiro |

#-U_Campus Vitual: redes sem fios inundam ensino superior 2006
Nova s3la tacnica melhora as condices dos servicos prestados Bos T oo oa s s
anossa

B
r?.
Mais
Newsletter

Escolas em banda larga i Servicos On-Line
- Estd concluido o projecto de migragdo do acesso Internet para banda

Figure 6.13: Tomba web interface.

Newsletter

{+19/07/2002

29 30 @31 01 0z 03 04
05 06 07 08 09 10 11

SPEEDMETER 22 13 14 [26 27 1
0 Spesdmeter ¢ uma funcionalidade desenvalvida internamente pela | 19|20 z1 22 23 24 25
FCCM que permite efectuar medigdes de débito. Durante o UIEMo Més | So- 57 = s s 65 s
registamos mais de 40 000 testes efectuados com recursc a este
sistema por diferentes uthzadores Teste aqui a velocidads do seu acesso
Internet.

comodamente

manages preservation tasks and defines selection criteria to automatically

populate the archive;

Searcher. Enables human users to easily access the archived data. It provides
four alternative access methods: Term Search, Prory Navigation, URL His-
tory or Page Flashback. The Term Search method finds contents containing
a given term. The contents are previously indexed to speed up the searches.
The Proxy Navigation method enables browsing the archive using a web
proxy. The URL History method finds the versions of a content referenced
by an URL. The Page Flashback mechanism enables direct access to the
archived versions of a content from the web being displayed on the browser.
The user just needs to click on a toolbar icon and the versions of the page

archived in Tomba will be immediately presented.

6.3.2.3 Web interface

Designing a web interface to access archived data is not straightforward. Fig-
ure 6.13 presents the public web interface of Tomba, implemented to support

the URL history access method (available at tomba.tumba.pt). This section

168

tomba.tumba.pt

6.3 Webhouse applications

discusses the requirements of the methods used to access the archived data and

presents the solutions adopted on the Tomba web interface.

Search for URL aliases. Navigation within the archive begins with the sub-
mission of an URL in the input form of the Tomba home page. In general,
multiple different URLs reference the same resource on the web and it may
seem indifferent to users to submit any of them. If only exact matches on
the submitted URL were accepted, some contents might not be found in
the archive. Hence, Tomba expands each submitted URL to a set of URLSs
that are likely to reference the same resource, and then searches for them.
For instance, if a user inputs the URL www.tumba.pt, Tomba will look
for contents harvested from the URLs: www.dlig.org/, dlib.org, www.
dlib.org/index.html, www.dlib.org/index.htm, www.dlib.org/index.
php, www.dlib.org/index.asp;

Time awareness. An archived content may contain code that when interpreted
by a browser redirects the user to the current web. For instance, the HTML
meta-tag "refresh" embedded in a page redirects the browser to a different
URL after the page was loaded. It is not possible to anticipate all the sit-
uations that may cause redirections to outside the archive. So, users must
be aware of the time space of the contents they are browsing. The Tomba
visualization interface displays on the left frame the archive dates of the
available versions of a content. The most recent version of the content is
initially presented on the right frame and users can switch to other ver-
sions by clicking on the associated dates, enabling a quick tracking of the
evolution of a content. The presentation of the archived contents within a
frame allows to visually identify a redirection to the current web because
these contents are presented outside the frame. This approach differs from
the one adopted by the Internet Archive that presents all the contents in a
new window and a user must detect the redirections to the current web by
examining the host name of the URL presented on the address bar of the

browser;

169

www.tumba.pt
www.dlig.org/
dlib.org
www.dlib.org/index.html
www.dlib.org/index.html
www.dlib.org/index.htm
www.dlib.org/index.php
www.dlib.org/index.php
www.dlib.org/index.asp

6. VALIDATION

Reproduce original layout and link navigation. The navigation within the
archived data should reproduce the behavior of the web. However, the con-
ditions in which the contents were originally published on the web may not
be reproducible by the archive. For instance, the archive cannot reproduce
the results of queries to databases. Nonetheless, web archives should try to
mimic the original layout of the contents and enable users to follow links
to other contents within the archive, when activating a link on a displayed
page. For this purpose, Tomba archives the contents in their original for-
mats, but modifies them before presentation. The contents are parsed and
the URLs to embedded images and links to other contents are replaced to
reference the archived contents. When a user clicks on a link, Tomba picks
the version of the URL in the same Layer of the referrer content and displays
it on the right frame along with the references to other versions on the left
frame. A user may retrieve an archived content without modifications by
checking the box original content below the submission form (Figure 6.13).
This is an interesting feature for authors who want to recoverer old versions

of a content;

Correct erroneous meta-data. There are web servers that provide erroneous
meta-data on the HTTP headers. Some of these meta-data can prevent
the content from being correctly interpreted and presented to the user.
For example, consider a page written using the ISO-8859-1 character set
encoding. If the web server indicates that the page was written using the
UTF-16 character set encoding, a browser would be unable to correctly
present the page. A web archive tries to reproduce an archived content
by providing the meta-data received from the web servers. However, if
this information was incorrect and the archived content is not correctly
presented to the user, it would seem that there is a mal-function within the
archive. Hence, a web archive should try to correct erroneous meta-data
before presenting contents to its users. Tomba tries to correct erroneous
character set identifications before presenting contents through the analysis

of the meta-tags embedded in the pages;

170

6.4 Conclusions

Block access to contents. A web archive loaded with large amounts of data
gathered from the web may contain offensive contents that should not be
reproduced by the archive. For instance, some contents should not be repro-
duced due to the country’s copyright legislation. Hence, the user interface
must be able to quickly block access to contents. Tomba provides an exclu-
sion mechanism that allows to block immediately the public access to a list

of contents.

The URL History access method has three main limitations. First, users may
not know which URL they should input to find the desired information. Second,
the short life of URLs limits their history to a small number of versions. The
Tomba prototype was loaded with 10 incremental crawls of the Portuguese Web
but on average each URL referenced just 1.7 versions of a content. Third, the
replacement of URLs may not be possible in pages containing format errors or
complex scripts to generate links. If these URLs reference contents that are still
online, the archived information may be presented along with current contents.
The Term Search and Navigation complement the URL History, but they have
other limitations. The Term Search finds contents independently from URLSs
but some contents may not be found because the correspondent text could not
be correctly extracted and indexed (Drugeon, 2005). The Navigation method
enables browsing the archive without requiring the replacement of URLs because
all the HT'TP requests issued by the user’s browser must pass through the proxy
that returns contents only for archived contents. However, it might be hard to

find the desired information by following links among millions of contents.

6.4 Conclusions

This chapter presented the experimental results obtained to validate Webhouse.
It described experiments ran to evaluate the performance and scalability of the
VN crawler and the Versus Content Manager, and the application of Webhouse in
several real usage scenarios. The obtained results showed that the performance of
Webhouse components enable the use of this WWh on data mining applications

in a broad scope of usage contexts.

171

6. VALIDATION

VN has been used in the past 4 years, having crawled over 54 million contents
(1.5 TB). Its crawling activities originated just two complaints during this period
of time, which shows that the adopted politeness measures were successful. The
obtained results showed that VN is robust and scalable. The upcoming of large
capacity disks at low prices helped crawlers extending its storage capacity. How-
ever, the storage throughput did not follow the pace of the disk’s capacity and
latency is a potential bottleneck that must be carefully addressed in the design
of crawlers.

The experiments ran on the Versus Content Manager showed that it outper-
formed significantly NF'S in read, write and delete operations. The Content Man-
ager is platform-independent and runs at the application level. Its source code
and the clients used to gather the presented results are available for download at
http://webstore.sourceforge.net/. The obtained results showed that the al-
gorithm for eliminating duplicates saves space and increases storage throughput.

Webhouse was successfully applied to support a search engine for the Por-
tuguese Web, publicly available at www.tumba.pt since 2002, which provides a
broad scope of search features. Webhouse was used as experimental platform to
develop and evaluate data mining applications. Plus, the data gathered during
the development of Webhouse enabled the creation of test collections used in
research activities.

Webhouse was also used to support a national web archive prototype named
Tomba (available at tomba.tumba.pt). This chapter discussed the design and
selection strategies to populate a national web archive. No criteria alone provides
the solution for selecting the contents to archive. Thus, combinations must be
used. The costs and complexity of the preservation of contents increase with the
variety of media types archived, but archiving contents of just three media types
(HTML, GIF and JPEG) reduced the coverage of a national web by only 5%.
This is an interesting selection criterion to simplify web archival, in exchange for
a small reduction on the coverage of the web. Designing a web user interface for
a web archive is also a challenging task. There are alternative access methods
but none of them is complete by itself, so they must be used in conjunction to

provide access to the archived data.

172

http://webstore.sourceforge.net/
www.tumba.pt
tomba.tumba.pt

Chapter 7

Conclusions

The web is a powerful source of information, but additional tools to help users in
taking advantage from its potential are required. One of the problems that these
tools must address is how to cope with a data source which was not designed to
be automatically interpreted by software applications. Web warehousing is an
approach to tackle this problem. It consists on extracting data from the web,
storing it locally and then, providing uniform access methods that facilitate its
automatic processing and reuse by different applications. This approach is con-
ceptually similar to Data Warehousing approaches, used to integrate information
from relational databases. However, the peculiar characteristics of the web, such
as its dynamics and heterogeneity, raise new problems that must addressed to
design an efficient Web Warehouse (WWh).

In general, the characteristics of the data sources have a major influence on the
design of the information systems that process the data. A major challenge in the
design of Web Warehouses is that web data models are scarce and become quickly
stale. Previous web characterization studies showed that the web is composed of
distinct portions with peculiar characteristics. It is important to accurately define
the boundaries of these portions and model them, so that the design of a WWh
can reflect the characteristics of the data it will store. The methodology used
to sample the web influences the derived characterizations. Hence, the samples
used to model a portion of the web must be gathered using a methodology that

emulates the extraction stage of the web data integration process.

173

7. CONCLUSIONS

Previous works focused on architectural aspects of crawlers and warehouses.
There are high-performance crawlers that enable the quick refreshment of the data
kept in a WWh. Web Warehousing projects produced complete systems able to
harvest, store and provide access to large amounts of web data. However, most
research in these domains assumed that the web is uniform. This assumption is
not supported by the results obtained in web characterization studies.

This thesis addressed the problem of web modelling and studied the influence
of web characteristics in Web Warehouses design. The research was conducted
following mainly an experimental methodology. A model for the Portuguese Web
was derived and considering it, a WWh prototype named Webhouse was devel-

oped. This thesis contributed to answer the following research questions:

Which features should be considered in a model of the web? The char-
acterization of the sites, contents and link structure of a web portion is
crucial to design an efficient Web Warehouse to store it. Some features de-
rived from the analysis of the global web may not be representative of more
restricted domains, such as national webs. However, these portions can be
of interest to large communities and characterizing a small portion of the
web is quite accessible and can be done with great accuracy. Some web
characteristics, such as web data persistence, require periodical samples of
the web to be modelled. These metrics should be included in web models
because they enable the identification of evolution tendencies that are deter-
minant to the design of efficient Web Warehouses, which keep incrementally

built data collections.

How can the boundaries of a portion of the web be defined? A set of se-
lection criteria delimits the boundaries of a web portion and it is defined
according to the requirements of the application that will process the har-
vested data. The selection criteria should be easily implemented as an au-
tomatic harvesting policy. Selection criteria based on content classification

and domain restrictions revealed to be suitable options.

What can bias a web model? The methodology used to gather web samples
influences the obtained characterizations. In the context of Web Ware-

housing, crawling is an adequate sampling method because it is the most

174

commonly used in web data extraction. However, the configuration and
technology used in the crawler, and the existence of hazardous situations on
the web influences the derived models. Thus, the interpretation of statistics
gathered from a web portion, such as a national web, is beyond a math-
ematical analysis. It requires knowledge about web technology and social

reality of a national community.

How persistent is information on the web? Web data persistence cannot
be modelled through the analysis of a single snapshot of the web. Hence,
models for the persistence of URLs and contents of the Portuguese Web
were derived from several snapshots gathered for three years. The lifetime
of URLs and contents follows a exponential distribution. Most URLs have
short lives and the death rate is higher in the first months, but there is a

minority that persists for long periods of time.

The obtained half-life of URLs was two months and the main causes of
death were the replacement of URLs and the deactivation of sites. Persis-
tent URLs are mostly static, short and tend to be linked from other sites.
The lifetime of sites (half-life of 556 days) is significantly larger than the
lifetime of URLs. The obtained half-life for contents was just two days.
The comparison of the obtained results with previous works suggests that
the lifetime of contents is decreasing. Persistent contents were not related
to depth and were not particularly distributed among sites. About half of

the persistent URLs referenced the same content during their lifetime.

How do web characteristics affect Web Warehouses design? Web data
models help on important design decisions in the initial phases of Web
Warehousing projects. Duplication of contents is prevalent on the web and
it is difficult to avoid the download of duplicates during a crawl because the
duplicates are commonly referenced by distinct and apparently unrelated
URLs. A collection of contents built incrementally presents an additional
number of duplicates because many contents remain unchanged over time
and are repeatedly stored. Hence, eliminating duplicates at storage level in

a WWh is an appealing feature. However, the mechanisms adopted for the

175

7. CONCLUSIONS

elimination of duplicates must address URL transience that may prevent

the implementation of algorithms based on historical analysis.

Web data persistence influences the definition of data structures and al-
gorithms to manage them in a WWh. Models that help predicting web
data persistence enable measuring the freshness of the information kept
and scheduling refreshment operations. A WWh that keeps information for
long periods of time must also address preservation issues to maintain the

stored information accessible after it is no longer available on-line.

The extraction of information from the web is a very sensitive task, be-
cause the software component responsible for it must address unpredicted
situations. Web models enable the identification of hazardous situations on
the web and contribute to the design of robust crawlers. A WWh must
present a distributed architecture to face the large size of the web. Web
characteristics influence the partitioning strategies adopted to perform load

balancing among the processes that compose a WWh.

This thesis mainly addressed the extraction and loading of web data into a
WWh. Several versions of Webhouse were iteratively developed until its design
could not be significantly improved (Engineering validation approach). Webhouse
proved to present a flexible and efficient architecture that enabled its usage in
broader scopes than Web Warehousing. The problem of designing efficient Web
Warehouses is complex and required combining knowledge from different fields.
This research provided contributions in Web Characterization, Crawling, Web
Warehousing and it was also an useful tool that contributed to support other

research studies.

7.1 Limitations

This thesis presented a thorough study of the characteristics of the Portuguese
Web. However, it was not clear if the same results would be achieved in other
webs. Perhaps the characteristics of the sites and their content depends more on
the methodology used to sample the web than on the community they belong to.

Although the characterization of the Portuguese Web may not be representative

176

7.1 Limitations

of other web portions, it was representative of the data that populated Webhouse.
The web model could be extended with metrics, such as, the importance of sites
and content based on popularity algorithms (Page et al., 1999), the characteris-
tics of contents belonging to specific categories (newspapers, web portals, digital
portals, digital libraries) or the presence of partial duplicates. The experimental
data sets used in the experiments were mainly composed by textual contents. It
would be interesting to study data sets containing a wider range of media types.

The amount of information available on the web is extremely large. The Web-
house prototype proved to be efficient when processing relatively small amounts
of data. However, designing a WWh able to harness petabytes of data would
raise new problems that could not be studied with the resources available for
this research. The Versus repository was designed to be used in a broader scope
than just Web Warehousing. Although it presented satisfactory results in the
performed experiments while processing web data, I believe that a large-scale
web repository would require an architecture assuming that it would store web
contents exclusively. This assumption would enable deeper system optimizations
to support large-scale Web Warehouses.

This thesis assumed a pull-model to perform web data extraction, in which
a crawler actively harvests information and loads it into a repository. However,
push-models, such as RSS feeds (RDF Site Summaries) (W3C, 2003), are gaining
popularity and they should be addressed in the architecture of a WWh. The
storage throughput of the harvested contents and the meta-data extraction from
contents in proprietary formats are the main problems of the current version
of Webhouse. These aspects could be improved by studying alternative storage
techniques and conversion tools.

Currently, systems like Hadoop (The Apache Software Foundation, 2006) pro-
vide useful experimental platforms to validate research in Web Warehousing.
However, when this research began, the offer of Web Warehousing software was
very limited and I had to develop Webhouse to support it. Webhouse was imple-
mented using off-the-shelf database management systems to save on development
time. It was shown that these systems can be used to support Web Warehouses.
However, they must be adequately configured and tuned, requiring deep knowl-

edge about the functioning of the DBMS. In the end, a question remains: is it

177

7. CONCLUSIONS

easier to develop specific solutions from scratch to implement a Web Warehouse
or to configure and optimize a DBMS to support the required functionalities. T

believe that it depends on the background knowledge of the developers.

7.2 Future Work

The amount and diversity of data available on the web tends to increase. Thus,
research related to the creation of tools able to harness this information should
remain very active in the next years.

This thesis addressed the identification and modelling of a national commu-
nity web. As the web continues to grow, I believe that research on community
webs will gain more importance, because most users access a limited set of infor-
mation sources related to the communities they belong. More accurate national
community webs could be defined by combining crawling policies with geograph-
ical tools. It would also be interesting to crawl samples of community webs and
the general web simultaneously using the same crawler configuration to determine
the differences among them.

In future work, it would be interesting to study the influence of popularity in
web data persistence and combine multiple features that influence persistence in
a weighted model, sensitive to the peculiar characteristics of web collections. 1
suspect that images have higher persistency than textual contents. So, another
important direction would be to study the persistence of a broader scope of media
types.

Hazardous situations to the automatic processing of web data were docu-
mented in this thesis. However, some of them could not be completely solved
and new ones keep appearing. The identification of new hazardous situations on
the web and the mitigation of their effects in web data processing systems is a
required research activity.

A main problem in the design of Web Warehouses is that most web data is not
generated having automatic interpretation in mind. This research tried to solve
this problem by mitigating the perverse effects that low-quality data has on Web
Warehouses. On the other hand, one could try to investigate how to increase the

quality of the contents published on the web to facilitate its automatic processing.

178

7.2 Future Work

The main objective of the Semantic Web is to create this machine-interpretable
web (W3C, 2004), but its implementation has been too slow in practice. The
success of the web was due to its simplicity. This enabled the widespread of web
publications. I believe that the proposed models to support the Semantic Web
are too complex to be a replacement of the existent web. One alternative way to
increase the contents quality could be the creation of tools that help publishers
in the identification and solution of problems with their contents.

Search engines and web archives are deeply related to web warehousing. This
research raised my interest on the ranking mechanisms used by search engines.
The PageRank algorithm used by Google is commonly identified as the key to
the success of this search engine (Page et al., 1999). However, it was presented
in 1998 and I believe that the current mechanisms used by Google do not match
this initial proposal mainly because search engines must prevent against web
spammers that try to manipulate these well-known ranking algorithms. The study
and application of web models is essential to derive new ranking algorithms.

The information kept in the repositories of search engines is periodically re-
freshed to update the indexes and the old one is discarded. The storage require-
ments of these repositories are relatively small and there is no need for interaction
among them, because search engines are maintained by independent and rival en-
terprises. The main objective of search engines is to provide a small set of relevant
results to a user search, independently from the number of pages existent on the
web that may contain that information. Thus, search engines do not need to
perform exhaustive harvests from the web.

On their turn, web archives have more demanding requirements for Web Ware-
houses than search engines. Web archives need to perform exhaustive crawls of
the web and have high storage requirements, because they need to preserve large
web collections built incrementally. Web archiving is a daunting task and I be-
lieve that the cooperation among international institutions could make it easier.
My vision of the future of web archiving is having several institutions responsible
for the preservation of the data published in independent web portions. Merging
all the portions would correspond to the global web space. This way, the cov-

erage of web archival would increase and the effort required to archive the web

179

7. CONCLUSIONS

would be divided across national or international organizations avoiding dupli-
cations. One way to assign web archiving responsibilities could be to delegate
them to the registrars that administrate the top-level domains. Each registrar
would become responsible for archiving the contents published in the sites hosted
under its top-level domain. However, this approach would probably cause the
increase of the price of domain registrations and domain owners would have to be
charged according to the amount of contents they publish. Nonetheless, the web
is global and users could be interested in finding historical contents world-wide.
Although the gathering, storage and preservation could be spread across several
web archives, users should be able to easily access information in all of them.
One possible approach to achieve this could be having a standard and uniform
access method supported by all web archives, independently from the underlying
technology. Users could employ a tool that communicates with the web archive
access mechanisms and merges the obtained results. This approach is similar to
meta-search, which merges results gathered from several search engines (Chignell
et al., 1999). However, meta-search engines have not been very successful, mainly
because the results returned by different search engines are quite similar and the
relevance of the merged results is not significantly better than the one obtained
through query on a single search engine. On its turn, web archives would return
very different results because each one of the archives holds a different portion of
the web. The searches could be refined by users to restrict results. For instance,
by selecting the source web archives or content languages. The widespread usage
of Web Warehouses to support global web archiving raises new and stimulating

problems in several research areas:

e Research in P2P systems enabled content sharing over the Internet (Dabek
et al., 2001). Web archives should be collaborative to avoid redundant
efforts. Thus, they would need to communicate with each others, most
likely through the Internet. The communication in Wide-Area Networks is
a complex task and research in protocols that enable efficient comunication

among Web Warehouses would be interesting;

e Grid computing aims to create world-wide distributed and collaborative

clusters of computers that enable mass processing mainly to support re-

180

7.2 Future Work

search. For instance, to process data generated by satellites (Hoschek et al.,
2000). Web warehousing also requires the processing of large amounts of
data and the application of Grid computing research in distributed Web

Warehouses could be a possible direction for future work;

e Web search has been evolving in the past years. However, searching in his-
torical web collections raises new problems that are far from being solved.
After a few years of archiving, a web archive would easily hold many
petabytes of data. Engines able to search among these data are required.
Moreover, retrieving relevant information in historical collections is not triv-
ial. The ranking algorithms used to find relevant documents within a single
snapshot of the web cannot cope with web collections incrementally built
(Berberich et al., 2006). For instance, in general, the PageRank algorithm
assumes that each content is identified by one URL and the contents that
receive more links are the most important. In a web collection incrementally
built, the same URL may be referencing many contents and determining
the relative importance of contents gathered in different periods of time is

not straightforward;

¢ Finding ways to preserve web data is not trivial. For instance, it is unclear
which meta-data or tools must be kept to ensure the access to the archived
contents in the future. The definition of adequate preservation strategies
and standards that enable the replication of contents among several Web

Warehouses is an open issue.

I think that the success of web archiving initiatives depends on the advances
provided by Web Warehousing research. Web modelling will have a key role in
this research field because the characteristics of web data influence the design of

Web Warehouses, as it was shown in this thesis.

181

References

ABITEBOUL, S., BUNEMAN, P. & Suciu, D. (2000). Data on the web: from

relations to semistructured data and XML. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

ABITEBOUL, S., COBENA, G., MASANES, J. & SEDRATI, G. (2002). A first
experience in archiving the French web. In Proceedings of the 6th European
Conference on Research and Advanced Technology for Digital Libraries, 1-15,
Springer-Verlag, London, UK.

ALBERTSEN, K. (2003). The paradigma web harvesting environment. In Proceed-
wngs of 3rd ECDL Workshop on Web Archives, Trondheim, Norway.

ALMEIDA, R.B. & ALMEIDA, V.A.F. (2004). A community-aware search engine.
In Proceedings of the 13th International Conference on World Wide Web, 413—
421, ACM Press.

ArLITT, M.F. & WILLIAMSON, C.L. (1997). Internet web servers: workload
characterization and performance implications. IEEE/ACM Transactions Net-
working, 5, 631-645.

BAEZA-YATES, R. & CAsTILLO, C. (2000). Caracterizando la Web chilena. In
Encuentro chileno de ciencias de la computacion, Sociedad Chilena de Ciencias

de la Computacion, Punta Arenas, Chile.

BAEZA-YATES, R. & CAsTILLO, C. (2004). Crawling the infinite web: five lev-
els are enough. In Proceedings of the 3rd Workshop on Web Graphs (WAW),
Springer LNCS, Rome, Italy.

183

REFERENCES

BAEZA-YATES, R. & CAsTILLO, C. (2005). Caracteristicas de la web chilena
2004. Technical report, Center for Web Research, University of Chile.

BAEZA-YATES, R. & POBLETE, B. (2006). Dynamics of the chilean web struc-
ture. Comput. Networks, 50, 1464-1473.

BAEZA-YATES, R., POBLETE, J. & SAINT-JEAN, F. (2003). Evoluciéon de la
web chilena 2001-2002. http://www.todocl.cl/stats.phtml.

BAEZA-YATES, R., CAsTILLO, C. & LOPEZ, V. (2005). Characteristics of the
web of Spain. Cybermetrics - International Journal of Scientometrics, Infor-

metrics and Bibliometrics, 9.

BAEZA-YATES, R., CAsTILLO, C. & ErTHIMIADIS, E. (2007a). Characteriza-

tion of national web domains. ACM Transactions on Internet Technology, 7.

BAEZA-YATES, R., CAsTILLO, C. & GRAELLS, E. (2007b). Caracteristicas de

la web chilena 2006. Technical report, Center for Web Research, University of
Chile.

BALDI, P., FrRASCONI, P. & SmyTH, P. (2003). Modeling the Internet and the
web: probabilistic methods and algorithms. Wiley.

BARR, D. (1996). Common DNS Operational and Configuration Errors.

BARROsO, L.A., DEAN, J. & HOLZLE, U. (2003). Web search for a planet: The
Google cluster architecture. IEEE Micro, 23, 22-28.

BEITZEL, S.M., JENSEN, E.C., CHOWDHURY, A., GROSSMAN, D. & FRIEDER,
O. (2004). Hourly analysis of a very large topically categorized web query log.
In Proceedings of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 321-328, ACM Press,
New York, NY, USA.

BENT, L., RABINOVICH, M., VOELKER, G.M. & X1A0, Z. (2004). Characteri-
zation of a large web site population with implications for content delivery. In
Proceedings of the 13th International Conference on World Wide Web, 522-533,
ACM Press.

184

REFERENCES

BERBERICH, K., BEDATHUR, S. & WEIKUM, G. (2006). Rank synopses for
efficient time travel on the web graph. In Proceedings of the 15th Conference
on Information and Knowledge Management, Arlington, USA.

BERK, E. & ANANIAN, C.S. (2005). JLex: a lexical analyzer generator for
Java(TM). http://www.cs.princeton.edu/ appel/modern/java/JLex/.

BERLINER, B. (1990). CVS II: Parallelizing software development. In Proceed-
ings of the USENIX Winter 1990 Technical Conference, 341-352, USENIX
Association, Berkeley, CA.

BERNERS-LEE, T., FIELDING, R. & MASINTER, L. (2005). Uniform Resource
Identifier (URI): Generic Syntaz.

BHARAT, K. & BRODER, A. (1999). Mirror, mirror on the web: a study of

host pairs with replicated content. In Proceedings of the Fighth International
Conference on World Wide Web, 1579-1590, Elsevier North-Holland, Inc.

BHARAT, K., BRODER, A.Z., DEAN, J. & HENZINGER, M.R. (2000). A com-
parison of techniques to find mirrored hosts on the WWW. Journal of the
American Society of Information Science, 51, 1114-1122.

BHARAT, K., CHANG, B.W., HENZINGER, M.R. & RUHL, M. (2001). Who links
to whom: Mining linkage between web sites. In Proceedings of the 2001 IEEE
International Conference on Data Mining, 51-58, IEEE Computer Society.

BHOWMICK, S., MADRIA, S. & NG, W.K. (2003). Web Data Management.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

BoLbi, P. & VIGNA, S. (2004). The webgraph framework I: compression tech-

niques. In Proceedings of the 15th International Conference on World Wide
Web, 595602, ACM Press, New York, NY, USA.

BoLpi, P., CODENOTTI, B., SANTINI, M. & VIGNA, S. (2002a). Structural
properties of the African web. In Proceedings of the 11th International World

Wide Web Conference, Honolulu, Hawaii.

185

http://www.cs.princeton.edu/~appel/modern/java/JLex/

REFERENCES

BoLpi, P., CODENOTTI, B., SANTINI, M. & VIGNA, S. (2002b). Ubicrawler:
A scalable fully distributed web crawler. In Proceedings of the 8th Australian

World Wide Web Conference.

BORBINHA, J., FREIRE, N., SILvA, M.J. & MARTINS, B. (2003). Internet search
engines and opacs: Getting the best of two worlds. In ElPub 2003 - ICCC/IFIP

7th International Conference on Electronic Publishing, Guimaraes, Portugal.

BRANDMAN, O., CHO, J., GARCIA-MOLINA, H. & SHIVAKUMAR, N. (2000).

Crawler-friendly web servers. In Proceedings of the Workshop on Performance
and Architecture of Web Servers (PAWS), ACM Press, Santa Clara, California.

BREWINGTON, B.E. & CYBENKO, G. (2000). How dynamic is the web? Com-
puter Networks, 33, 257-276.

BRIN, S. & PAGE, L. (1998). The anatomy of a large-scale hypertextual web
search engine. Computer Networks and ISDN Systems, 30, 107-117.

BRIN, S., Davis, J. & GARCIA-MOLINA, H. (1995). Copy detection mechanisms
for digital documents. In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD
international conference on Management of data, 398-409, ACM Press, New
York, NY, USA.

BRODER, A., KuMAR, R., MAGHOUL, F., RAGHAVAN, P., RAJAGOPALAN,
S., STATA, R., TOMKINS, A. & WIENER, J. (2000). Graph structure in the
web. In Proceedings of the 9th International World Wide Web Conference on
Computer networks, 309-320, North-Holland Publishing Co.

BRODER, A.Z., GLASSMAN, S.C., MANASSE, M.S. & ZWEIG, G. (1997). Syn-
tactic clustering of the web. In Proceedings of the Sixth International conference
on World Wide Web, 1157-1166, Elsevier Science Publishers Ltd.

BRODER, A.Z., NAJORK, M. & WIENER, J.L. (2003). Efficient URL caching for
World Wide Web crawling. In Proceedings of the 12th International Conference
on World Wide Web, 679-689, ACM Press.

186

REFERENCES

BURKARD, T. (2002). Herodotus: A Peer-to-Peer Web Archival System. Master
thesis, Massachusetts Institute of Technology.

CACERES, R., DoucLis, F., FELDMANN, A., GLASS, G. & RABINOVICH, M.
(1998). Web proxy caching: the devil is in the details. SIGMETRICS Perfor-

mance Evaluation Review, 26, 11-15.

CAFARELLA, M. & CUTTING, D. (2004). Building nutch: Open source search.
Queue, 2, 54-61.

CALLAGHAN, B., PAWLOWSKI, B. & STAUBACH, P. (1995). RFC 1813: NFS

Version 8 Protocol Specification. Sun Microsystems, Inc.

CAMPOS, J. (2003). Versus: a Web Repository. Master thesis, Faculdade de

ciéncias, Universidade de Lisboa.

CARDOSO, N., Siva, M.J. & CostAa, M. (2004). The XLDB Group at
CLEF’2004. In Cross Language FEvaluation Forum - Working Notes for the
CLEF 2004 Workshop, Bath, UK.

CARDOSO, N., ANDRADE, L., SIMOES, A. & SivA, M.J. (2005a). The XLDB
group participation at the CLEF’2005 ad hoc task. In Cross Language FEvalu-
ation Forum: Working Notes for the CLEF 2005 Workshop, Wien, Austria.

CARDOSO, N., MARTINS, B., CHAVvES, M., ANDRADE, L. & Siva, M.J.
(2005b). The XLDB Group at GeoCLEF 2005. In Working Notes for the CLEF
2005 Workshop, Wien, Austria.

CARDOSO, N., MARTINS, B., GoMES, D. & SivA, M.J. (2005¢). WPT 03:
Recolha da Web Portuguesa. Diana Santos.

CARDOSO, N., SivA, M.J. & MARTINS, B. (2006). The University of Lisbon
at 2006 Ad-Hoc Task. In Cross Language Fvaluation Forum: Working Notes
for the CLEF 2006 Workshop, Alicante, Spain.

CAsTILLO, C. (2004). Effective Web Crawling. Ph.D. thesis, University of Chile.

187

REFERENCES

CHAKRABARTI, S., VAN DEN BERG, M. & Dowm, B. (1999). Focused crawling:

a new approach to topic-specific web resource discovery. Computer Networks,
31, 1623-1640.

CHAKRABARTI, S., JosHI, M.M., PUNERA, K. & PENNOCK, D.M. (2002). The
structure of broad topics on the web. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web, 251-262, ACM Press, New York,
NY, USA.

CHAVES, M.S., Stiva, M.J. & MARTINS, B. (2005). A Geographic Knowledge
Base for Semantic Web Applications. In Proc. of the 20th Brazilian Symposium

on Databases, Uberlindia, Minas Gerais, Brazil, 40-54.

CHIGNELL, M.H., GWIZDKA, J. & BODNER, R.C. (1999). Discriminating meta-
search: A framework for evaluation. Information Processing and Management,
35, 337-362.

CHo, J. (2001). Crawling the Web: Discovery and maintenance of large-scale web
data. Ph.D. thesis, Stanford University.

Cno, J. & GARCIA-MoOLINA, H. (2000a). The evolution of the web and impli-
cations for an incremental crawler. In Proceedings of 26th International Con-

ference on Very Large Data Bases, 200—209.

CHo, J. & GARCIA-MOLINA, H. (2000b). Synchronizing a database to improve
freshness. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, 117-128, ACM Press.

CHo, J. & GARCIA-MOLINA, H. (2002). Parallel crawlers. In Proceedings of the
11th International Conference on World Wide Web, 124-135, ACM Press.

CHO, J. & GARCIA-MOLINA, H. (2003). Estimating frequency of change. ACM
Transactions Internet Technology, 3, 256-290.

Cuo, J. & Roy, S. (2004). Impact of search engines on page popularity. In
Proceedings of the 13th international conference on World Wide Web, 20-29,
ACM Press.

188

REFERENCES

CHo, J., GARCIA-MOLINA, H. & PAGE, L. (1998). Efficient crawling through
URL ordering. Computer Networks and ISDN Systems, 30, 161-172.

Cuo, J., GARciA-MouiNA, H., HAVELIWALA, T., LAM, W., PAEPCKE, A.,
RAGHAVAN, S. & WESLEY, G. (2004). Stanford WebBase components and

applications. Technical report, Stanford Database Group.

CHRISTENSEN, N. (2005). Preserving the bits of the danish internet. In 5th In-
ternational Web Archiving Workshop (IWAW05), Viena, Austria.

COCKBURN, A. & McKENzIE, B. (2001). What do web users do? An empirical
analysis of web use. International Journal Human-Computuer Studies, 54, 903—
922.

CONNOLLY, D. & MASINTER, L. (2000). The ‘text/html’ Media Type.

CoNsORTIUM, U.W.A. (2006). UK web archiving consortium: Project overview.
http://info.webarchive.org.uk/.

COOPER, B.F., CRESPO, A. & GARCIA-MOLINA, H. (2002). The Stanford
archival repository project: preserving our digital past. Technical report 2002-

47, Department of Computer Science, Stanford University.

CosTA, L. & SARMENTO, L. (2006). Component evaluation in a question answer-
ing system. In N. Calzolari, K. Choukri, A. Gangemi, B. Maegaard, J. Mariani,
J. Odjik & D. Tapias, eds., Proceedings of the 5th International Conference on
Language Resources and Fvaluation, 1520-1523.

CosTA, M. (2004). SIDRA: a Flexible Web Search System. Master’s thesis, De-
partment of Informatics, University of Lisbon, DI/FCUL TR-04-17.

COTHEY, V. (2004). Web-crawling reliability. J. Am. Soc. Inf. Sci. Technol., 55,
1228-1238.

CRESPO, A. & GARCIA-MOLINA, H. (1998). Archival storage for digital libraries.
In Proceedings of the Third ACM International Conference on Digital Libraries.

189

http://info.webarchive.org.uk/

REFERENCES

CuNHA, C., BESTAVROS, A. & CROVELLA, M. (1995). Characteristics of WWW
client-based traces. Tech. rep., Boston, MA, USA.

DA COSTA CARVALHO, A.L., DE SOUzZA BEZERRA, A.J., DE MOURA, E.S.,
DA SILVA, A.S. & PERES, P.S. (2005). Detecgao de réplicas utilizando con-
teido e estrutura. In Simpdsio Brasileiro de Banco de Dados, 25-39, ACM

Press, Uberlandia, Brasil.

DABEK, F., BRUNSKILL, E., KAASHOEK, M.F., KARGER, D., MORRIS, R.,
STOICA, 1. & BALAKRISHNAN, H. (2001). Building peer-to-peer systems with
Chord, a distributed lookup service. 81-86.

DAIGLE, L., VAN GULIK, D., TANNELLA, R. & FALTSTROM, P. (2002). Uniform
Resource Names (URN) Namespace Definition Mechanisms.

Davis, C., VIXIE, P., GoobwiIN, T. & DICKINSON, 1. (1996). A Means for

Expressing Location Information in the Domain Name System.

DavisoNn, B.D. (1999). Web traffic logs: An imperfect resource for evaluation.
In Proceedings of th INET’99 Conference.

DAy, M. (2003). Collecting and preserving the World Wide Web. http://www.

jisc.ac.uk/uploaded_documents/archiving_feasibility.pdf.

DEAN, J. & GHEMAWAT, S. (2004). In MapReduce: simplified data processing

on large clusters, San Francisco, California.

DELOS (2006). Welcome to cross language evaluation forum. http://www.

clef-campaign.org/.

DENEHY, T. & Hsu, W. (2003). Duplicate management for reference data. Tech-
nical report RJ 10305, IBM Research.

DiLL, S., EIRON, N., GIBSON, D., GRUHL, D., GUHA, R., JHINGRAN, A.,
Kanunco, T., McCURLEY, K.S., RAJAGOPALAN, S., TOMKINS, A., TOM-
LIN, J.A. & ZIEN, J.Y. (2004). A case for automated large scale semantic

annotation. Journal of Web Semantics, 1, 1-17.

190

http://www.jisc.ac.uk/uploaded_documents/archiving_feasibility.pdf
http://www.jisc.ac.uk/uploaded_documents/archiving_feasibility.pdf
http://www.clef-campaign.org/
http://www.clef-campaign.org/

REFERENCES

Doucatis, F., FELDMANN, A., KRISHNAMURTHY, B. & Mocgur, J.C. (1997).
Rate of change and other metrics: a live study of the World Wide Web. In
USENIX Symposium on Internet Technologies and Systems.

DRUGEON, T. (2005). A technical approach for the French web legal deposit. In
5th International Web Archiving Workshop (IWAW05), Viena, Austria.

EDWARDS, J., McCURLEY, K. & ToMLIN, J. (2001). An adaptive model for
optimizing performance of an incremental web crawler. In Proceedings of the
10th international conference on World Wide Web, 106—-113, ACM Press, New
York, NY, USA.

EIRON, N., McCURLEY, K.S. & ToMLIN, J.A. (2004). Ranking the web fron-
tier. In Proceedings of the 15th international conference on World Wide Web,
309-318, ACM Press.

ENTLICH, R. (2004). Blog today, gone tomorrow? Preservation of Weblogs. RLG

Diginews, 8.

ExposTO, J., MACEDO, J., PINA, A.; ALVES, A. & RUFINO, J. (2005). Ge-
ographical partition for distributed web crawling. In Proceedings of the 2005
Workshop on Geographic Information Retrieval, 55—60, ACM Press, New York,
NY, USA.

FETTERLY, D., MANASSE, M., NAJORK, M. & WIENER, J. (2003). A large-
scale study of the evolution of web pages. In Proceedings of the 12th Interna-
tional Conference on World Wide Web, 669678, ACM Press, New York, NY,
USA.

FiELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH,
P. & BERNERS-LEE, T. (1999). Hypertext Transfer Protocol - HTTP/1.1.

FINKEL, R.A., ZASLAVSKY, A., MONOSTORI, K. & ScuMipDT, H. (2002). Sig-

nature extraction for overlap detection in documents. In Twenty-Fifth Aus-
tralasian Computer Science Conference (ACSC2002), ACS, Melbourne, Aus-

tralia.

191

REFERENCES

FLAKE, G., LAWRENCE, S. & GILES, C.I.. (2000). Efficient identification of web
communities. In Sizth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 150-160, Boston, MA.

FREED, N. & BORENSTEIN, N. (1996a). Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies.

FREED, N. & BORENSTEIN, N. (1996b). Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types.

FREITAS, S., AFONSO, A.P. & Siwva, M.J. (2006). Mobile Geotumba: Geo-
graphic information retrieval system for mobile devices. In Proceedings of the
4th MiNEMA Workshop, 83-87.

FUNREDES (2001). The place of Latin languages on the Internet. http://www.
funredes.org/LC/english/L5/L56index_english.html.

GHEMAWAT, S., GOBIOFF, H. & LEUNG, S.T. (2003). The Google file system.

In Proceedings of the 19th ACM Symposium on Operating Systems Principles,
ACM, Bolton Landing, NY USA.

G1BsON, D., KLEINBERG, J.M. & RAGHAVAN, P. (1998). Inferring web com-
munities from link topology. In Proceedings of the 9th ACM Conference on
Hypertext and Hypermedia, 225-234, Pittsburgh, Pennsylvania.

GoMEs, D. & Stva, M.J. (2005). Characterizing a national community web.
ACM Transactions on Internet Technology, 5, 508-531.

GoMEs, D. & Siva, M.J. (2006a). Modelling information persistence on the
web. In ICWE ’06: Proceedings of the 6th international conference on Web
engineering, 193—-200, ACM Press, New York, NY, USA.

GOMES, D. & Siva, M.J. (2006b). The Viuva Negra web crawler. DI/FCUL
TR 06-21, Department of Informatics, University of Lisbon.

GOMES, D., FREITAS, S. & SitvA, M.J. (2006a). Design and selection criteria
for a national web archive. In J. Gonzalo, C. Thanos, M.F. Verdejo & R.C.

192

http://www.funredes.org/LC/english/L5/L5index_english.html
http://www.funredes.org/LC/english/L5/L5index_english.html

REFERENCES

Carrasco, eds., Proc. 10th FEuropean Conference on Research and Advanced
Technology for Digital Libraries, ECDL, vol. 4172, Springer-Verlag.

GoMESs, D., SaNTOs, A.L. & Stva, M.J. (2006b). Managing duplicates in
a web archive. In L.M. Liebrock, ed., Proceedings of the 21th Annual ACM
Symposium on Applied Computing (ACM-SAC-06), Dijon, France.

GOOGLE (2003). Google web search features. www.google.com/help/features.
html#link.

GREFENSTETTE, G. & NIOCHE, J. (2000). Estimation of English and non-
English language use on the WWW. In Proceedings of RIAO’2000, Content-
Based Multimedia Information Access, 237-246, Paris.

GRIBBLE, S.D. & BREWER, E.A. (1997). System design issues for Internet
middleware services: Deductions from a large client trace. In Proceedings of
the 1997 Useniz Symposium on Internet Technologies and Systems (USITS-
97), Monterey, CA.

GRUHL, D., CHAVET, L., GIBSON, D., MEYER, J., PATTANAYAK, P.,
TOMKINS, A. & ZIEN, J. (2004). How to build a Webfountain: An archi-
tecture for very large-scale text analytics. IBM Systems Journal, 43, 64-77.

HaBIB, M.A. & ABRAMS, M. (2000). Analysis of sources of latency in down-
loading web pages. In WebNet, 227-232, San Antonio, Texas, USA.

HAKALA, J. (2001). Collecting and preserving the web: Developing and testing
the NEDLIB harvester. RLG Diginews, 5.

HALLAM-BAKER, P.M. & CONNOLLY, D. (2005). Session identification URI.
http://www.w3.org/TR/WD-session-id.html.

HALLGRIMSSON, T. & BANG, S. (2003). Nordic web archive. In Proceedings of
3rd ECDL Workshop on Web Archives, Trondheim, Norway.

HANDSCHUH, S., STAAB, S. & VoLz, R. (2003). On deep annotation. In Pro-
ceedings of the 12th International Conference on World Wide Web, 431-438,
ACM Press, New York, NY, USA.

193

www.google.com/help/features.html#link
www.google.com/help/features.html#link
http://www.w3.org/TR/WD-session-id.html

REFERENCES

HARRENSTIEN, K., StA#L, M.K. & FrINLER, E.J. (1985). NIC-
NAME/WHOIS.

HENZINGER, M. (2003). Algorithmic challenges in web search engines. Journal
of Internet Mathematics, 1, 115-126.

HENZINGER, M.R., HEYDON, A., MITZENMACHER, M. & NAJORK, M. (2000).
On near-uniform url sampling. In Proceedings of the 9th International World
Wide Web Conference on Computer networks: the international journal of com-
puter and telecommunications networking, 295308, North-Holland Publishing
Co.

HENZINGER, M.R., MOTWANI, R. & SILVERSTEIN, C. (2002). Challenges in
web search engines. SIGIR Forum, 36, 11-22.

HEXA SOFTWARE DEVELOPMENT CENTER (2003). Geo targeting IP address to
country city region ISP latitude longitude database for Internet developers -

ip2location. http://www.ip2location.com/.

HEYDON, A. & NAJORK, M. (1999). Mercator: A scalable, extensible web
crawler. World Wide Web, 2, 219-229.

HirAI J., RAGHAVAN, S., GARCIA-MOLINA, H. & PAEPCKE, A. (1999). Web-
Base: A repository of web pages. In Proceedings of the 9th World-Wide Web

Conference.

HoscHEK, W., JANEZ, F.J., SAMAR, A., STOCKINGER, H. & STOCKINGER,
K. (2000). Data management in an international data grid project. In GRID,
77-90.

HyperSonicSQL (2001). HypersonicSQL. http://sourceforge.net/projects/
hsqldb/.

ICANN (2004). ICANN | Verisign’s wildcard service deployment. http://www.

icann.org/topics/wildcard-history.html.

194

http://www.ip2location.com/
http://sourceforge.net/projects/hsqldb/
http://sourceforge.net/projects/hsqldb/
http://www.icann.org/topics/wildcard-history.html
http://www.icann.org/topics/wildcard-history.html

REFERENCES

IVENGAR, A.K., SQUILLANTE, M.S. & ZHANG, L. (1999). Analysis and char-

acterization of large-scale web server access patterns and performance. World
Wide Web, 2, 85-100.

JAHN (2004). Spider traps - an upcoming arms race. http://www. jahns-home.
de/rentmei/html/sptraps.html.

JAIMES, A., DEL SOLAR, J.R., VERSCHAE, R., YAKSIC, D., BAEZA-YATES,
R., Davis, E. & CAsTiLLO, C. (2003). On the image content of the Chilean
web. In LA-WEB °03: Proceedings of the First Conference on Latin American
Web Congress, 72, IEEE Computer Society.

Jur, J. (2005). Calimaco, um repositorio de documentos biologicos. Tecnhical
report, Department of Informatics, University of Lisbon, Lisbon, Portugal, in

Portuguese.
KAHLE, B. (2002). The Internet Archive. RLG Diginews, 6.

Karz, R.H. (1990). Toward a unified framework for version modeling in engi-
neering databases. ACM Computing Surveys, 22, 375-408.

KeLLy, T. & MogGurL, J. (2002). Aliasing on the World Wide Web: Prevalence
and performance implications. In Proceedings of the 11th International World
Wide Web Conference, Honolulu, Hawaii.

KLEINBERG, J.M. (1999). Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46, 604—632.

KOEHLER, W. (2002). Web page change and persistence-a four-year longitudinal
study. Journal of the American Society for Information Science and Technol-
ogy, 53, 162-171.

KOHT-ARSA, K. (2003). High Performance Cluster-based Web Spiders. Master’s

thesis, Graduate School, Kasetsart University.

KOSTER, M. (1994). A standard for robot exclusion. http://www.robotstxt.
org/wc/norobots.html.

195

http://www.jahns-home.de/rentmei/html/sptraps.html
http://www.jahns-home.de/rentmei/html/sptraps.html
http://www.robotstxt.org/wc/norobots.html
http://www.robotstxt.org/wc/norobots.html

REFERENCES

KuMAR, R., RAGHAVAN, P.; RAJAGOPALAN, S., SIVAKUMAR, D., TOMKINS,
A. & Uprar, E. (2000). The Web as a graph. In Proc. 19th ACM SIGACT-
SIGMOD-AIGART Symp. Principles of Database Systems, PODS, 1-10, ACM

Press.

KUMAR, R., Novak, J., RAGHAVAN, P. & TOMKINS, A. (2005). On the bursty
evolution of blogspace. World Wide Web, 8, 159-178.

KuNZzE, J., ARVIDSON, A., MOHR, G. & STACK, M. (2006). The WARC File
Format (Version 0.8 rev B). Internet Draft.

Lavoig, B., O’NEILL, E.T. & McCrLAIN, P. (1997). OCLC office of research

examines web-accessible information to find order in chaos.

LAWRENCE, S. & GILEs, C.L. (1999). Accessibility of information on the web.
Nature, 400, 107-109.

LAWRENCE, S., COETZEE, F., GLOVER, E., FLAKE, G., PENNOCK, D.,
KRrROVETZ, B., NIELSEN, F., KRUGER, A. & GILES, L. (2000). Persistence of
information on the web: analyzing citations contained in research articles. In
Proceedings of the 9th International Conference on Information and Knowledge
Management, 235-242, ACM Press, New York, NY, USA.

LEUNG, S.T.A., PERL, S.E., STATA, R. & WIENER, J.L. (2001). Towards web-
scale web archeology. Research Report 174, Compaq Research Center, Paolo
Alto CA.

LIFANTSEV, M. (2000). Voting model for ranking web pages. In P. Graham &

M. Maheswaran, eds., International Conference on Internet Computing, 143—
148, Las Vegas, Nevada.

L1FANTSEV, M. & CHIUEH, T.C. (2003). Implementation of a modern web search
engine cluster. In FREENIX Track: 2003 USENIX Annual Technical Confer-

ence, San Antonio, Texas, USA.

Liu, B. (1998). Characterizing Web Response Time. Master’s thesis, Faculty of
the Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

196

REFERENCES

MACDONALD, J. (1999). Versioned file archiving, compression, and distribution.
http://www.cs.berkeley.edu/~ jmacd/.

MARKTEST (2003). Netpanel. http://netpanel.marktest.pt/.

MARKWELL, J. & BROOKS, D.W. (2003). ’Link rot’ limits the usefulness of
web-based educational materials in biochemistry and molecular biology. Bio-
chemistry and Molecular Biology Education, 31, 69-72.

MARSHAK, M. & LEVY, H. (2003). Evaluating web user perceived latency using

server side measurements. Computer Communications, 26, 872-887.

MARTINS, B. (2004). Inter-Document Similarity in Web Searches. Master’s the-

sis, Department of Informatics, University of Lisbon.

MARTINS, B. & Sitva, M.J. (2003). Web information retrieval with result set
clustering. In Progress in Artificial Intelligence, 450-454, Springer Berlin/Hei-
delberg, Beja, Portugal.

MARTINS, B. & StvA, M.J. (2004a). Spelling correction for search engine
queries. In Proceedings of FsTAL - Espana for Natural Language Processing,
372-383.

MARTINS, B. & Simva, M.J. (2004b). A statistical study of the WPT 03 corpus.
In Proceedings of EsTAL - Espana for Natural Language Processing, Alicante,
Spain.

MARTINS, B. & StvA, M.J. (2005a). Language identification in web pages.
In Proceedings of the 20th Annual ACM Symposium on Applied Computing
(ACM-SAC-05), ACM Press, Santa Fe, New Mexico.

MARTINS, B. & Siova, M.J. (2005b). The WebCAT framework : Auto-
matic generation of meta-data for web resources. In Proceedings of the 2005
IEEE/WIC/ACM International Conference on Web Intelligence.

MARTINS, B., CARDOSO, N., CHAVES, M., ANDRADE, L. & SiwvA, M.J.
(2006). The University of Lisbon at GeoCLEF 2006. In Cross Language Evalua-
tion Forum: Working Notes for the CLEF 2006 Workshop, Alicante, Espanha.

197

http://www.cs.berkeley.edu/~jmacd/
http://netpanel.marktest.pt/

REFERENCES

MAXMIND LLC (2003). Maxmind: How to locate your internet visitors geotar-
geting IP address to country state city ISP organization latitude longitude.

http://www.maxmind. com/.

McCURLEY, K.S. & ToMKINS, A. (2004). Mining and knowledge discovery

from the web. In 200/ International Symposium on Parallel Architectures, Al-
gorithms and Networks (ISPAN’04), 4, IEEE, Inc, Hong Kong, SAR, China.

MOCKAPETRIS, P.V. (1987). Domain names - concepts and facilities. United
States.

MocuL, J. (1999a). A trace-based analysis of duplicate suppression in HTTP.
Technical Report 99/2, Compaq Computer Corporation Western Research Lab-

oratory.

MogGuL, J. (1999b). Errors in timestamp-based HTTP header values. Research
Report 99/3, Compaq Computer Corporation Western Research Laboratory.

MOHR, G., KIMPTON, M., STACK, M. & RANITOVIC, 1. (2004). Introduction

to heritrix, an archival quality web crawler. In 4th International Web Archiving
Workshop (IWAW04), Bath, UK.

NAJORK, M. & HEYDON, A. (2001). On high-performance web crawling. SRC

research report, Compaq Systems Research Center.

NAJORK, M. & WIENER, J.L. (2001). Breadth-first crawling yields high-quality
pages. In Proceedings of the 10th International World Wide Web Conference,
114-118, Elsevier Science, Hong Kong.

NANAVATI, A., CHAKRABORTY, A., DEANGELIS, D., GODIL, H. & D’SILvVA,
T. (2004). An investigation of documents on the World Wide Web. Tech. rep.

NATIONAL LIBRARY OF AUSTRALIA (2006). Padi - web archiving. http://www.
nla.gov.au/padi/topics/92.html, 18.

NETCRAFT LTD. (2004). Netcraft: April 2003 archives. http://news.netcraft.
com/archives/2003/04/index.html.

198

http://www.maxmind.com/
http://www.nla.gov.au/padi/topics/92.html
http://www.nla.gov.au/padi/topics/92.html
http://news.netcraft.com/archives/2003/04/index.html
http://news.netcraft.com/archives/2003/04/index.html

REFERENCES

NoroNHA, N., Campros, J.P., GOMEs, D.; SiivA, M.J. & BORBINHA, J.
(2001). A deposit for digital collections. In P. Constantopoulos & 1.T. Sglvberg,
eds., Proceedings of the 5th European Conference on Research and Advanced
Technology for Digital Libraries, ECDL, vol. 2163 of LNCS, 200-212, Springer.

NTouLAs, A., CHO, J. & OLsTON, C. (2004). What’s new on the web?: the
evolution of the web from a search engine perspective. In Proceedings of the
13th international conference on World Wide Web, 1-12, ACM Press.

NTouLAS, A., ZERFOS, P. & CHO, J. (2005). Downloading textual hidden web
content through keyword queries. In Proceedings of the 5th ACM/IEEE-CS
Joint Conference on Digital libraries, 100-109, ACM Press, New York, NY,
USA.

OCLC (2001). Impact of virtual hosting on the analysis. http://www.oclc.org/

research/projects/archive/wcp/pubs/rn4-virtualhosting.htm.

OLSEN, S. (2002). Does search engine’s power threaten web’s independence?
CNET News.com.

O’NEILL, E.T. (1999). Web sites: Concepts, issues, and definitions. http://
wcp.oclc.org/pubs/rnl-websites.html.

O’NEILL, E.T., LAvolg, B.F. & BENNETT, R. (2003). How "world wide" is the
web?: Trends in the evolution of the public web. D-Lib Magazine, 9.

ORACLE CORPORATION (2004). Oracle9i. http://www.oracle.com/ip/index.
html?content.html.

OVERTURE SERVICES INC. (2003). Alltheweb.com: Frequently asked questions -
URL investigator. www.alltheweb.com/help/faqs/url_investigator.

PAGE, L., BRIN, S., MOTWANI, R. & WINOGRAD, T. (1999). The PageRank ci-
tation ranking: Bringing order to the web. Technical report, Stanford Database

Group.

PATTERSON, A. (2004). Why writing your own search engine is hard. Queue, 2,
48-53.

199

http://www.oclc.org/research/projects/archive/wcp/pubs/rn4-virtualhosting.htm
http://www.oclc.org/research/projects/archive/wcp/pubs/rn4-virtualhosting.htm
http://wcp.oclc.org/pubs/rn1-websites.html
http://wcp.oclc.org/pubs/rn1-websites.html
http://www.oracle.com/ip/index.html?content.html
http://www.oracle.com/ip/index.html?content.html
www.alltheweb.com/help/faqs/url_investigator

REFERENCES

PAULSON, L.D. (2005). Building rich web applications with AJAX. Computer,
38, 14-17.

PERSEUS DEVELOPMENT CORP. (2004). Perseus blog survey.

PHILLIPS, M. (2003). PANDORA, Australia’s Web Archive, and the Digital
Archiving System that Supports it. DigiCULT.info, 24.

PIKE, R., DORWARD, S., GRIESEMER, R. & QUINLAN, S. (2005). Interpret-
ing the data: Parallel analysis with sawzall. Scientific Programming Journal
- Special Issue on Grids and Worldwide Computing Programming Models and
Infrastructure, 13, 227-298.

PINKERTON, B. (1994). Finding what people want: experiences with the we-
berawler. In 2nd World Wide Web Conference, Geneva, Switzerland.

PunpiTi, S.S. (2000). Measuring and analysis of the Thai world wide web. In
Proceedings of the Asia Pacific Advance Network, 225-230.

QIN, J., ZHOU, Y. & CHAU, M. (2004). Building domain-specific web collec-
tions for scientific digital libraries: a meta-search enhanced focused crawling
method. In JCDL °04: Proceedings of the 4th ACM/IEEE-CS Joint Conference
on Digital libraries, 135141, ACM Press.

RABIN, M.O. (1979). Probabilistic algorithm in finite fields. Tech. Rep.
MIT/LCS/TR-213.

RAGHAVAN, S. & GARcCIA-MoLINA, H. (2001). Crawling the hidden web. In

Proceedings of the 27th International Conference on Very Large Data Bases,
129-138, Morgan Kaufmann Publishers Inc.

RARE (1992). RIPE ncc - network management database.
http://www.ripn.net /nic/ripe-docs/ripe-078.ps.

RAUBER, A., ASCHENBRENNER, A. & WITVOET, O. (2002). Austrian on-line
archive processing: Analyzing archives of the World Wide Web.

200

REFERENCES

RHEA, S., EATON, P., GEELS, D., WEATHERSPOON, H., ZHAO, B. & KUBI-
ATOWICZ, J. (2003). Pond: the Oceanstore Prototype. In Proceedings of the
2nd Useniz Conference on File and Storage Technologies (FAST’03).

RICHARDSON, M. & DOMINGOS, P. (2002). The Intelligent Surfer: Probabilistic
Combination of Link and Content Information in PageRank. In Advances in

Neural Information Processing Systems 14, MIT Press.
RIVEST, R. (1992). RFC 1521 - The MD5 Message-Digest Algorithm.

RODEH, O. & TEPERMAN, A. (2003). zfs: A scalable distributed file system
using object disks. In Proceedings of the 20 th IEEE/11th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSS’03), 207, IEEE
Computer Society.

ROSENSTEIN, M. (2000). What is actually taking place on web sites: e-commerce
lessons from web server logs. In EC ’00: Proceedings of the 2nd ACM conference
on Electronic commerce, 38—43, ACM Press, New York, NY, USA.

SANGUANPONG, S. & KOHT-ARSA, K. (2003). Data partition and job scheduling

for balancing load on cluster of web spiders. In National Computer Science and
Engineering Conference (NCSEC-2003), Chol Buri.

SANTOS, D. & CARDOsO, N. (2005). Portuguese at CLEF 2005: Reflections
and Challenges. In Cross Language Evaluation Forum: Working Notes for the
CLEF 2005 Workshop, Wien, Austria.

SANTOS, D. & CHAVES, M.S. (2006). The place of place in geographical IR. In
3rd Workshop on Geographic Information Retrieval, SIGIR’06, 58, Seattle.

SARMENTO, L. (2006). Baco - a large database of text and co-occurrences. In
N. Calzolari, K. Choukri, A. Gangemi, B. Maegaard, J. Mariani, J. Odjik &
D. Tapias, eds., Proceedings of the 5th International Conference on Language
Resources and Fvaluation, 1787-1790.

201

REFERENCES

SHERFESEE, D. & O’DRriscoLL, N. (2005). A web mining research platform.
In Proceedings of the 28th Annual International ACM SIGIR conference on
Research and Development in Information Retrieval, 682—682, ACM Press,
New York, NY, USA.

SHIVAKUMAR, N. & GARCIA-MoLINA, H. (1995). SCAM: A copy detection
mechanism for digital documents. In Proceedings of the 2nd Annual Conference

on the Theory and Practice of Digital Libraries.

SHIVAKUMAR, N. & GARCIA-MOLINA, H. (1999). Finding near-replicas of docu-
ments and servers on the web. In Selected papers from the International Work-
shop on The World Wide Web and Databases, 204212, Springer-Verlag.

SHKAPENYUK, V. & SUEL, T. (2002). Design and implementation of a high-
performance distributed web crawler. In Proceedings of the 18th International

Conference on Data Engineering, 357, IEEE Computer Society.

S1ivA, A.S., VELOSO, E.A., GOLGHE, P.B., RIBEIRO-NETO, B., LAENDER,
AH.F. & Ziviani, N. (1999). Cobweb a crawler for the Brazilian web. In
Proceedings of the String Processing and Information Retrieval Symposium &

International Workshop on Groupware, 184, IEEE Computer Society.

S1ivA, L.O., MAcEDO, J., CosTA, A., BELO, O. & SANTOS, A. (2002).
Obtencao de estatisticas do www em Portugal. Tech. rep., OCT and DI, Uni-
versidade do Minho.

STLVA, M.J. (2003). The case for a portuguese web search engine. In P. Isaias, ed.,
Proceedings of IADIS International Conference WWW /Internet 2003, Algarve,
Portugal.

Stva, M.J., MARTINS, B., Cuaves, M.S., CARDOSO, N. & AFONSO, A.P.
(2006). Adding Geographic Scopes to Web Resources. CEUS - Computers, En-
vironment and Urban Systems, Elsevier Science, 30, 378-399.

SILVERSTEIN, C., MARATS, H., HENZINGER, M. & MoRIcz, M. (1999). Anal-
ysis of a very large web search engine query log. SIGIR Forum, 33, 6-12.

202

REFERENCES

SMITH, Z. (1997). The truth about the web. Web Techniques Magazine, 2.

SPINELLIS, D. (2003). The decay and failures of web references. Communications
of the ACM , 46, 71-77.

Sypow, M. (2004). Random surfer with back step. In Proceedings of the 13th
International World Wide Web Conference on Alternate Track Papers and
Posters, 352-353, ACM Press, New York, NY, USA.

THE APACHE SOFTWARE FOUNDATION (2004). Apache HTTP Server Version
1.3: Module mod_ include.

THE APACHE SOFTWARE FOUNDATION (2006). About Hadoop. http://
lucene.apache.org/hadoop/about.html.

THE LIBRARY OF CONGRESS (2006). MINERVA home page (mapping the in-
ternet electronic resources virtual archive, library of congress web archiving).

http://lcweb2.loc.gov/cocoon/minerva/html/minerva-home.html.

Tue WEB RoBOTS PAGES (2005). HTML author’s guide to the ROBOTS meta-
tag. http://www.robotstxt.org/wc/meta-user.html.

THELWALL, M. (2002). A free database of university web links: data collection is-
sues. International Journal of Scientometrics, Informetrics and Bibliometrics,
6/7.

THUROW, S. (2002). Search Engine Visibility. New Riders Press, Indianapolis,
USA.

W3C (1999). HTML 4.01 specification. http://www.w3.0rg/TR/htm1401/.

W3C (1999a). Web characterization activity statement. http://www.w3.org/
WCA/Activity.html.

W3C (1999b). Web characterization terminology and definitions sheet. http:
//www . w3.0rg/1999/05/WCA-terms/.

W3C (2003). W3C RSS 1.0 news feed creation how-to.
http://www.w3.org/2001/10/glance/doc/howto.

203

http://lucene.apache.org/hadoop/about.html
http://lucene.apache.org/hadoop/about.html
http://lcweb2.loc.gov/cocoon/minerva/html/minerva-home.html
http://www.robotstxt.org/wc/meta-user.html
http://www.w3.org/TR/html401/
http://www.w3.org/WCA/Activity.html
http://www.w3.org/WCA/Activity.html
http://www.w3.org/1999/05/WCA-terms/
http://www.w3.org/1999/05/WCA-terms/

REFERENCES

W3C (2004). W3C Semantic Web. http://www.w3.0rg/2001/sw/.

WEBB, C. (2000). Towards a preserved national collection of selected Australian
digital publications. In Proceedings of Preservation 2000 Conference, York,
UK.

Wirts, C.E. & MIKHAILOV, M. (1999). Examining the cacheability of user-
requested web resources. In Proceedings of the jth International Web Caching

Workshop, San Diego, California.

WOODRUFF, A., AoKI, P.M., BREWER, E. & GAUTHIER, P. (1996). An in-
vestigation of documents from the World Wide Web. In Proceedings of the 5th
International World Wide Web Conference on Computer Networks and ISDN
Systems, 963-980, Elsevier Science Publishers B. V., Amsterdam, The Nether-

lands.

Wu, J. & ABERER, K. (2004). Using siterank for decentralized computation of
web document ranking. In Adaptive Hypermedia 2004, Eindhoven University
of Technology, The Netherlands.

YAN, H., WANG, J., L1, X. & Guo, L. (2002). Architectural design and evalua-
tion of an efficient web-crawling system. The Journal of Systems and Software,
60, 185-193.

You, L.L. & KAramAaNOLIs, C. (2004). Evaluation of efficient archival storage
techniques. In 21st IEEE / 12th NASA Goddard Conference on Mass Storage
Systems and Technologies, College Park, MD.

ZELKOWITZ, M.V. & WALLACE, D.R.. (1998). Experimental models for validat-
ing technology. Computer, 31, 23-31.

ZOOK, M. (2000). Internet metrics: using host and domain counts to map the

Internet.

204

http://www.w3.org/2001/sw/

Index

Archive Workspace, 166
AW, 106, 109-111
AWSP, 35, 36

Blogs, 48, 162, 163

Catalog, 96, 105, 106, 109, 111, 112, 166

ccTLD, 15, 17, 18, 45, 46, 163

CLEF, 159

CNode, 117, 118

CobWeb, 30

Content Manager, 96, 97, 99, 101-104,
106, 110, 111, 125, 140, 151—
154, 171, 172

CP, 27-29, 32, 114-122, 145, 146

Data Warehousing, 1, 2, 173

DBMS, 111, 112, 177, 178

DNS, 32, 47, 50, 114, 115, 117, 123, 125,
127, 128, 133, 135

DNS LOC, 47, 48

Frontier, 27, 28, 31-33, 116, 117, 120~
123, 125, 140, 143

Google, 1, 23, 30, 33, 37, 47, 179
Googlebot, 30, 31

Group Workspace, 166

gTLD, 15, 163

GW, 107, 109-111

Hadoop, 37, 177
HyperSonicSQL, 112

Internet Archive, 1, 31, 38, 113, 161,
167, 169

IP partitioning, 28, 32, 113115

Ip2location, 47

Kspider, 30, 31, 142

MapReduce, 37
Mercator, 30, 31, 142
MIME, 10, 49, 52, 60, 61, 149, 164

NFS, 32, 103, 151-155, 172

Page partitioning, 29, 114

PageRank, 13, 179, 181

Polybot, 30-32, 142

Portuguese Web, 5-7, 43-49, 51, 52, 55,
57, 58, 61, 64, 67, 71-73, 75, 76,
93, 95, 124-126, 129, 137, 139—
141, 147, 148, 151, 156, 158-
161, 163, 164, 171, 172, 174-176

PW, 107-112

REP, 25, 145
RIPE, 45, 163

205

INDEX

Site partitioning, 29, 116 XLDB, 155, 159, 160
Spider traps, 126, 127

Tomba, 161, 165, 166, 168-172
tumba, 51, 139, 155-160, 162

Ubicrawler, 30-32, 142
URL-seen test, 28, 116, 121
URN, 21

Versus, 5, 95-97, 103, 105-111, 116, 119,
125, 138, 140, 151-153, 166, 171,
172, 177

VN, 4, 95, 96, 112, 116, 117, 120, 122,
125, 129, 138-143, 147-150, 165,
171, 172

WARC, 167

WebBase, 30-34, 142

WebCat, 5

WebCrawler, 30

WebFountain, 34, 35

Webgather, 30-32, 142

Webhouse, 4, 5, 7, 95, 96, 99, 137-140,
155, 158-161, 165, 171, 172, 174,
176, 177

WHOIS, 45, 47, 48

Whoweda, 36

WPTO03, 7, 158, 159

WU, 107-110

WWh, 1, 3-7, 14, 19-21, 26, 34, 36, 40,
41, 43, 52, 53, 57, 61, 73, 75,
77, 80, 84, 86, 88, 92, 93, 95—
99, 102, 112, 126, 137, 161, 171,
173-177

206

	1 Introduction
	1.1 Objectives and methodology
	1.2 Contributions
	1.3 Structure of the thesis

	2 Background and Related Work
	2.1 Web characterization
	2.1.1 Terminology
	2.1.2 Sampling methods and identification of community webs
	2.1.3 Structural analysis
	2.1.3.1 Summary of web characterizations
	2.1.3.2 Links
	2.1.3.3 Duplication
	2.1.3.4 Size
	2.1.3.5 Language

	2.1.4 Information persistence

	2.2 Crawling
	2.2.1 Crawler types and functioning
	2.2.2 Requirements
	2.2.3 Architectural options
	2.2.4 Web partitioning and assignment
	2.2.5 Crawler examples
	2.2.5.1 Design comparison

	2.3 Web Warehousing projects
	2.3.1 Stanford WebBase
	2.3.2 WebFountain
	2.3.3 Alexa Web Search Platform
	2.3.4 Whoweda
	2.3.5 Search engines
	2.3.6 Web archives

	2.4 Conclusions

	3 Characterizing the structural properties of a national web
	3.1 Identifying the boundaries of a national web
	3.1.1 Definition of the Portuguese Web
	3.1.2 Finding contents outside the ccTLD

	3.2 Experimental setup
	3.2.1 Crawler configuration
	3.2.1.1 Spider trap biasing and mitigation

	3.2.2 Data set

	3.3 A model of the Portuguese Web
	3.3.1 Site characteristics
	3.3.1.1 Site names
	3.3.1.2 IP addresses
	3.3.1.3 Domain distribution
	3.3.1.4 Web servers

	3.3.2 Content characteristics
	3.3.2.1 URL length
	3.3.2.2 Last-Modified dates
	3.3.2.3 Media type and size
	3.3.2.4 Language
	3.3.2.5 Meta-tags

	3.3.3 Web structure
	3.3.3.1 Duplication
	3.3.3.2 Link structure
	3.3.3.3 Content popularity
	3.3.3.4 Site popularity

	3.4 Conclusions

	4 Web data persistence
	4.1 Experimental setup
	4.2 URL persistence
	4.2.1 Lifetime of URLs
	4.2.1.1 URL death
	4.2.1.2 Lifetime of sites

	4.2.2 Characteristics of persistent URLs
	4.2.2.1 Dynamic URLs
	4.2.2.2 URL length
	4.2.2.3 Depth
	4.2.2.4 Links

	4.3 Lifetime of contents
	4.3.1 Characteristics of persistent contents
	4.3.1.1 Dynamic contents
	4.3.1.2 Last-Modified date
	4.3.1.3 Content length
	4.3.1.4 Depth
	4.3.1.5 Site size

	4.4 Relation between URL and content persistence
	4.5 Conclusions

	5 Designing a Web Warehouse
	5.1 The Versus repository
	5.1.1 Content Manager
	5.1.1.1 Elimination of partial duplicates in a WWh
	5.1.1.2 Data model
	5.1.1.3 An algorithm for eliminating duplicates
	5.1.1.4 Fake duplicates
	5.1.1.5 Content Manager architecture
	5.1.1.6 Implementation

	5.1.2 Catalog
	5.1.2.1 Data model
	5.1.2.2 Operational model
	5.1.2.3 Implementation

	5.2 The VN crawler
	5.2.1 Partitioning strategies
	5.2.2 Crawler architecture
	5.2.2.1 Crawling algorithm
	5.2.2.2 Fault management
	5.2.2.3 URL-seen test
	5.2.2.4 Optimizing bandwidth usage
	5.2.2.5 Implementation

	5.3 Coping with hazardous situations
	5.3.1 Spider traps
	5.3.2 Hard to interpret contents
	5.3.3 Duplicate hosts

	5.4 Conclusions

	6 Validation
	6.1 Crawler evaluation
	6.1.1 Experimental setup
	6.1.2 Performance comparison
	6.1.3 Bottlenecks
	6.1.4 Robustness
	6.1.5 Text extraction
	6.1.6 Tuning thresholds

	6.2 Versus content management
	6.2.1 Experimental setup
	6.2.2 Retrieving
	6.2.3 Deleting
	6.2.4 Storing
	6.2.5 Semantics of the store operation

	6.3 Webhouse applications
	6.3.1 The tumba! search engine
	6.3.1.1 Supporting research experiments

	6.3.2 The Tomba web archive
	6.3.2.1 Selection criteria for historical relevance
	6.3.2.2 Architecture
	6.3.2.3 Web interface

	6.4 Conclusions

	7 Conclusions
	7.1 Limitations
	7.2 Future Work

	References

