

Taxonomy of Distributed Event-Based
Programming Systems1

René Meier and Vinny Cahill
Distributed Systems Group, Department of Computer Science

Trinity College Dublin
{rene.meier, vinny.cahill}@cs.tcd.ie

© 2005, 2006 Trinity College Dublin

Permission to copy without fee all or part of this material is granted provided that this copyright notice
and the title of the document appear. To otherwise copy or republish requires explicit permission in
writing from Trinity College Dublin.

1 A later version of this paper has been published in the Computer Journal [1].

Document Identifier TR-3
Document Status Published
Created 20 October 2005
Revised 14 February 2006
Distribution Public

Abstract
Event-based middleware is currently being applied for application component integration in a
range of application domains. As a result, a variety of event services have been proposed to
address different requirements. In order to aid the understanding of the relationships between
these systems, this paper presents a taxonomy of distributed event-based programming
systems. The taxonomy is structured as a hierarchy of the properties of a distributed event
system and may be used as a framework to describe such a system according to its properties.
The taxonomy identifies a set of fundamental properties of event systems and categorises
them according to the event model supported and the structure of the event service. Event
services are further classified according to their organisation and their interaction models, as
well as other functional and non-functional features.

CONTENTS i

Contents

Contents... i
1 Introduction..1

1.1 Exploiting the Taxonomy.. 2
1.2 Related Work... 2
1.3 Interpreting the Taxonomy .. 3

2 The Taxonomy...5
2.1 Event Model... 7

2.1.1 Peer to Peer.. 7
2.1.2 Mediator .. 8
2.1.3 Implicit .. 9
2.1.4 Discussion.. 10

2.2 Event Service ... 11
2.2.1 Organisation... 12
2.2.2 Interaction Model... 15
2.2.3 Features... 19

3 Classification of Event Systems..24
4 Conclusion...24
Acknowledgments ...24
References...24

1 INTRODUCTION 1

1 Introduction

The event-based communication model represents a well-established paradigm for
asynchronously interconnecting the components that comprise an application in a potentially
distributed and heterogeneous environment, and has recently become widely used in a range
of application areas including large-scale internet services [2] and mobile computing [3, 4].
Event-based communication is particularly useful in centralised and distributed applications
that require one or more application components to react to changes occurring in other
application components as it provides a one-to-many or many-to-many communication
pattern [5-8]. The asynchronous nature of event-based communication [9, 10] results in a less
tightly coupled communication relationship between application components compared to the
traditional request/response communication model.
Event-based communication also allows application components to interact anonymously [11]
without concern for either the number or the location of the components involved.
Anonymous interaction allows application components to establish communication
relationships relatively easily, involving modest initialisation effort compared to the
request/response communication model. It is therefore well suited for accommodating
communities of cooperating distributed components that establish communication
relationships dynamically over time in an unpredictable fashion.
Event-based middleware is currently being applied in many application domains including
finance, telecommunications, smart environments, multimedia, avionics, health care, and
entertainment [2, 3, 12-19]. Moreover, with the widespread deployment and use of wireless
technology, where communication relationships amongst heterogeneous application
components [9] are established very dynamically during the lifetime of the components,
event-based middleware will become even more prevalent as it addresses important
application requirements including avoidance of long-lasting and hence potentially expensive
connections, hiding of communication latency due to decoupled interaction phases, omission
of centralised control, and heterogeneity. The notion of dynamically inaugurating
communication relationships among application components without relying on centralised
control is central to addressing the needs of a scalable system, representing the ability to
accommodate growth in a potentially large-scale distributed environment.
Event-based communication models, or simply event models, are used in applications ranging
from small-scale, centralised to large-scale, highly distributed systems [20]. On one hand,
they are exploited to interconnect individual components of applications, for example, the
components comprising graphical user interfaces [21, 22]. Such graphical components may
disseminate user-driven and hence sporadic changes to their state to other components of the
application that are required to react to these changes. At the other extreme, publishers of
stock trading information may utilise an event service to post the latest trading rates to a
group of brokers, potentially located in different cities or even countries [12, 13]. In between
these extremes, smart environments often employ event-based communication models to
interconnect a large number of application components [16] ranging from light and door
actuators and sensors to robotic vehicles moving within and between buildings.
As event-based middleware is used in a large number of applications in a range of domains, a
variety of event services have been proposed to address different application requirements.
This paper presents a survey of existing event systems structured as a taxonomy of distributed
event-based programming systems. Generally, a taxonomy is a classification that allows
different examples of some generic type to be systematically arranged in groups or
categorised according to established criteria. The taxonomy presented in this paper is

1 INTRODUCTION 2

structured as a hierarchy of the properties of a distributed event system and may be used as a
framework to describe an event system according to its properties. Arranging the properties
identified by a taxonomy in a hierarchical manner is a common mechanism for presenting and
describing systems and their features. For example, Martin et al. [23] describe their taxonomy
for distributed computing systems as a hierarchy of questions and answers about the features
of such systems.
The ultimate challenge of establishing a taxonomy is to identify the criteria according to
which the area of interest is categorised and to arrange them systematically. Our taxonomy
identifies a set of fundamental properties of event-based programming systems and
categorises them according to the event model supported and the structure of the event
service. Event services are further classified according to their organisation and interaction
model, as well as other functional features, such as event propagation model and event
filtering, and non-functional features, such as ordering semantics and security. These
properties are then arranged in a hierarchical manner starting from the root of the taxonomy,
which defines the relationship between event system, event service, and event model. Each
property is described providing corresponding terminology.
As far as possible, categories have been chosen to be independent but nevertheless, there are
some interdependencies between certain categories. These interdependencies are discussed in
the relevant sections.

1.1 Exploiting the Taxonomy
In addition to providing a means of describing an event system, the taxonomy can be used to
broadly summarise event systems and the taxonomy terminology provides a common
vocabulary to be used in the general discussion of event systems. Event systems can then be
discussed using the same terminology and therefore, can easily be compared with each other
or can be matched against system requirements. This can lead to the identification of families
of event systems that support a common feature by identifying the set of systems that support
a certain set of properties. For example, the properties described in Figure 30 can be used to
identify the family of event systems that supports mobility.
The taxonomy may also serve as a basis for identifying the canonical combination of the
properties of an event system required by a particular application domain, simply by applying
the taxonomy to a number of existing event systems used in that particular application domain
and by extracting the common combination of properties. This can be useful for the
requirements and design engineering of a novel event system. Moreover, the taxonomy is
expected to be utilised to identify novel combinations of the properties of event systems and
consequently, may serve as a basis for discovering potential research issues to be addressed in
future work. This has already led us to develop STEAM [24], a location-aware event-based
middleware for collaborative mobile applications.

1.2 Related Work
Our taxonomy presents a set of generic event system properties and hence can be used to
classify virtually any distributed event-based programming system regardless of system scale
or application domain. The taxonomy identifies a large variety of properties, including quality
of service, mobility, and security, and describes these properties as well as possible
implementation options in detail.
Existing work on describing event systems has focussed either on providing a high-level
reference model or on classifying event systems for a specific application area. Barrett et al.

1 INTRODUCTION 3

[25] present a framework for event-based software integration that provides a high-level
model for identifying components commonly found at the heart of event-based software
integration in large scale systems. This framework identifies the main components of an event
system as informers, listeners, registrars, routers, message transformer functions, and delivery
constraints. The framework describes the relationships among these components in detail
using an object-oriented type model, but does not specify possible patterns of interaction
between informers and listeners. Moreover, it does not explicitly identify functional event
system features and omits non-functional features altogether.
The work of Rosenblum and Wolf [26] on a design framework for event observation and
notification has focussed on supporting the construction of large-scale, event-based systems
for the Internet. This framework comprises seven models, namely the object, event, naming,
observation, time, notification, and resource models, to capture many of the design
dimensions relevant to Internet-scale applications. Even though each of these models is
discussed in detail, the overall number of properties according to which an event system may
be classified is substantially smaller compared to the taxonomy presented in this paper. This
is due to the fact that this framework imposes certain constraints in order to specifically
support Internet-scale event observation and notification and because certain issues, such as
quality of service, mobility, and security, have not been considered.
Eugster et al. [27] identify the common denominators of variants of the publish/subscribe
interaction scheme using three dimensions. These dimensions describe the decoupling
between producers and consumers of information in terms of time, space, and
synchronisation. This work focuses on implementation issues related to event dissemination,
the underlying media, and quality of service aspects, and as such does address other
functional and non functional features, such as mobility support, failure mode, and security
mechanisms.

1.3 Interpreting the Taxonomy
This taxonomy is presented using both figures and corresponding text. The figures outline the
relationships among the fundamental properties of event systems and define the terminology
to identify them. The text associated with each figure describes the corresponding properties
in detail. The figures allow a taxonomy user to easily trace paths through the hierarchy to
discover relevant properties. As summarised in Figure 1, the figures consist of nodes
representing properties of interest, one of which is the root node and some of which are
leaves. Nodes are connected by directed paths. The directed paths are represented by a set of
arrows describing the nature of the paths leaving a specific node. A set of dashed arrows
leaving a specific node indicates that exactly one path has to be chosen when tracing through
that node. Solid arrows indicate that at least one path has to be chosen, whereas double lined
arrows indicate that all possible paths need to be followed in parallel. In order to apply the
taxonomy to an event system, a taxonomy user traces paths through the hierarchy starting
from the root node and selecting the connections that most accurately describe the event
system until each selected path reaches a leaf. The terms associated with the nodes along a
path describe a property of the event system.

1 INTRODUCTION 4

1
Select all paths

Select exactly one path

Select at least one path

Leaf

Node

Figure 1. Taxonomy legend.

For example, Figure 21 shows that the features of an event service include both functional
and non-functional features by using double lined arrows to describe the paths between the
nodes. Hence, when tracing through the features node, all paths, i.e., both of them, must be
selected to describe the corresponding properties of the event system. The solid arrows
connecting the nodes in Figure 22 indicate that one kind of event propagation model can be
provided by an event service, although some event services may support both the sporadic
and the periodic event propagation models. Therefore, either one or both paths may be traced.
Figure 4 shows that an event model can be characterised as either peer-to-peer, mediator, or
implicit. The dashed arrows connecting the nodes, which imply that exactly one path has to be
chosen, illustrate this.

2 THE TAXONOMY 5

2 The Taxonomy

The root of the taxonomy, which is depicted in Figure 2, defines the relationship between an
event system, an event service and an event model. Every event system has both an event
service and an event model, which we define as follows:

• An event system is an application that uses an event service to carry out event-based

communication.

• An event service is middleware that implements an event model, hence providing event-
based communication to an event system.

• An event model consists of a set of rules describing a communication model that is based
on events.

We differentiate between event service and event model in order to capture the facts that an
event model defines an application-level view of an event service and that a range of different
event services may implement a given event model. Event models essentially reflect the
different uses for which they are intended. For example, the objectives of the Java AWT
delegation event model [21] differ substantially form those of the CORBA notification service
model [28] , which leads to major differences in the Application Programming Interfaces
(APIs) that they provide. The goal of the CORBA notification service model is to be
extremely general-purpose and usable in virtually any domain. Consequently, it supports a
wide range of features including typed and untyped event communication, as well as filtering
and administrative capabilities. Moreover, a variety of quality of service properties, such as
event reliability, connection reliability, event priority, and event delivery order, are supported
to control the propagation characteristics of events. This is reflected in a fairly large and
complex API. In contrast, the Java AWT delegation event model is intended for small-scale,
centralised applications, such as graphical user interfaces, and therefore omits many of the
features of the CORBA event model. This results in its API being much simpler than that of
the CORBA event model.

Event System

Event Service Event Model

Figure 2. The root of the taxonomy.

The CORBA event model also serves as an example of an event model that was specified
with the expectation of being implemented by a range of event services, and potentially being
exploited in different application domains. The Object Management Group (OMG) leaves
open the implementation of their model and therefore, leaves it to different vendors to provide
implementations. Consequently, event services supporting the CORBA event model have
been implemented and extended by a number of commercial and academic organisations [29],
[5], [30].

2 THE TAXONOMY 6

P

C

P/C

Producer Entity

Consumer Entity

Producer and
Consumer Entity

Legend:
Event System

Event Service

Transport Mechanism

Event Model P/C
P

C

P
C

P/C

Figure 3. Event system overview.

The relationships between event system, event service and event model are summarised from
the event system’s perspective in Figure 3. Apart from depicting how an event system uses an
event service that implements a particular event model, Figure 3 also outlines how event
system and service map onto a transport mechanism and how applications use entities as
hooks into the event service. Entities are the components of an application that produce and
consume events, excluding components of the event service. An entity may play the role of a
producer and/or a consumer of events.
There is no generally accepted standard terminology used for the application components that
act as consumers or producers of events. As a result, the event systems presented in this paper
use a variety of alternative terminology, which is summarised in Table 1, when referring to
event producers and consumers. We use the systems outlined in Table 1 later in this paper to
illustrate the properties identified by our taxonomy.

Table 1. Event system terminology.

Event System Producer Consumer

CEA [10, 31] Source object Client object

CONCHA [5] Multicast supplier Multicast consumer

CORBA [28, 32] Supplier Consumer

COSMIC [33, 34] Publisher Subscriber

ECO [6, 35] Object Object

Elvin [36, 37] Producer Consumer

Elvin Agents [38, 39] Producer Consumer

Gryphon [7, 40, 41] Publisher Subscriber

Hermes [42-44] Publisher Subscriber

Java AWT [21] Source Listener

Java Distributed [45] Generator Listener

JEDI [46] Active object Active object

Mobile Push [47] Publisher Subscriber

Obvents [48, 49] Publisher Subscriber

Rebeca [50, 51] Producer Consumer

SECO, uSECO, mSECO [6] Object Object

SIENA [52] Object of interest Interested party

2 THE TAXONOMY 7

Event System Producer Consumer

STEAM [24, 53-56] Producer Consumer

TAO RT CORBA [17, 30] Supplier Consumer

ToPSS [57-59] Publisher Subscriber

2.1 Event Model
The event model defines the manner in which an event service is made visible to the
application programmer. It specifies the components of an event service to which the
application programmer is explicitly exposed and that are used to subscribe to events and to
propagate them. In particular, the event model classifies the means by which consumers
subscribe to the events in which they are interested and the means by which an application
raises and delivers events, as well as the number and location of the components used. As
shown in Figure 4, we have identified three distinct categories of event model, which are
peer-to-peer, mediator, and implicit.

Event Model

Implicit Mediator Peer-to-Peer

Multiple Single

Non-Functionally
Equivalent

Functionally
Equivalent

Figure 4. Event model categories.

2.1.1 Peer to Peer
A peer to peer event model allows consumers to subscribe at specific named producers
directly and producers to deliver events to specific named consumers directly. The Java
distributed event model is based on a peer-to-peer event model allowing a
RemoteEventListener to subscribe to events by invoking a register method on an
explicitly named EventGenerator.

2 THE TAXONOMY 8

TheConsumerApplication {//the RemoteEventListener
 //subscribe to an explicit producer
 AnExplicitEventGeneratorRef = retrieveEventGeneratorRef();
 AnExplicitEventGeneratorRef.register(this);

 //delivery handler implementation
 notify(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

TheProducerApplication {//the EventGenerator
 //register method implementation
 register(RemoteEventListenerRef) {
 SubscribedRemoteEventListenerRef = RemoteEventListenerRef;
 }

 //raise an event
 AnEventInstance = new Event(someParameters);
 SubscribedRemoteEventListenerRef.notify(AnEventInstance);
}

Figure 5. A producer and a consumer application using the peer-to-peer Java distributed event
model.

The simplified application shown in Figure 5 outlines a subscribing
RemoteEventListener and an EventGenerator invoking the notify method on a
subscribed RemoteEventListener using a RemoteEventListener reference to
deliver a specific event instance.

2.1.2 Mediator
Event models utilising a mediator allow consuming entities to subscribe at a designated
mediator and producing entities to deliver events to the mediator, which then forwards them
to the subscribed entities.
The mediator sub-hierarchy explores the number and functionality of mediators in the event
model. We differentiate between models utilising a single mediator and models exploiting
multiple mediators. The CORBA event model2 may use a single mediator (known as an event
channel) for propagating all events from producers to consumers. Multiple mediators are
further divided into functionally equivalent and non-functionally equivalent mediators. In the
former, all mediators are functionally equivalent. Thus, entities may subscribe or deliver
events to any one of them. Such a mediator is called an event server in the SIENA model.
SIENA may use a set of different event server topologies of which all but the centralised
topology exploit multiple, functionally equivalent event servers. When mediators are not
functionally equivalent, entities have to subscribe or deliver events to the correct mediator.
For example, an application exploiting the CORBA event model3 may use multiple event
channels each propagating a different type of event.
The simplified application shown in Figure 6 outlines how both CORBA consumers and
producers connect to the explicitly-named event channel through which they intend to

2 The CORBA specification allows its event model to use a single or multiple mediators. For the
purpose of this example, we refer to a CORBA event model utilising a single mediator.
3 The CORBA specification allows its event model to use a single or multiple mediators. For the
purpose of this example, we refer to a CORBA event model utilising multiple mediators.

2 THE TAXONOMY 9

exchange events. Connected producers may raise events by pushing them to the event
channel, which forwards them to all subscribed consumers by invoking their delivery handlers
in turn.

TheConsumerApplication {
 //connect to an explicit event channel
 ConsumerAdmin = TheEventChannel.forConsumers();
 ProxyPushSupplier = ConsumerAdmin.obtainPushSupplier();
 ProxyPushSupplier.connectPushConsumer(TheConsumer);
}

TheConsumer {
 //delivery handler implementation
 push(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

TheProducerApplication {
 //connect to an explicit event channel
 SupplierAdmin = TheEventChannel.forSuppliers();
 ProxyPushConsumer = SupplierAdmin.obtainPushConsumer();
 ProxyPushConsumer.connectPushSupplier(TheSupplier);
}

TheSupplier {
 //raise an event
 AnEventInstance = new Event(someParameters);
 ProxyPushConsumer.push(AnEventInstance);
}

Figure 6. A producer and a consumer application using the mediator-based CORBA event
model.

2.1.3 Implicit
An implicit event model allows consuming entities subscribe to particular event types rather
than at another entity or a mediator. Producers generate events of some type, which are then
delivered to the subscribed consumers. The direct approach for CEA source objects to
disseminate events to client objects, described by Bacon et al. [31], is based on an implicit
event model. Figure 7 shows a simplified version of an active badge application using direct
CEA. The consumer subscribes by invoking a register method provided by a local library
passing the event type of interest as well as a reference to its delivery handler. The producer
declares its event type and subsequently raises events of this type by invoking a signal method
provided by a local library. The event service delivers events to all registered consumers by
calling their delivery handlers.

2 THE TAXONOMY 10

TheConsumerApplication {
 //subscribe to an event type
 template = Badge_Seen(17, 29);
 EventClient.Register(EventHandler, template);

 //delivery handler implementation
 EventHandler(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

TheProducerApplication {
 //specify the event type
 Badge : INTERFACE = Seen : EVENTCLASS [badge : BadgeId; sensor : SensorId];
 END.

 //raise an event
 e = Badge_Seen(17, 29);
 EventSource.Signal(e);
}

Figure 7. A producer and a consumer application using the implicit Direct CEA.

2.1.4 Discussion
An event system exploiting either a peer-to-peer or a mediator-based event model allows its
entities to interact by invoking remote methods directly on each other or on one or more
mediators respectively whereas entities of an event system with an implicit event model
interact by subscribing and delivering events locally using event types.
Significantly, these approaches differ in the way the identifiers of the components exposed to
the application programmer are obtained and maintained. Peer-to-peer and mediator-based
event models require the application programmer to obtain the identifiers of specific
producers or mediators respectively, usually by means of a naming service, and to maintain
them. Every consumer of an event system utilising a peer-to-peer event model is required to
obtain the identifier of each producer in which it is interested, i.e., the application programmer
must ensure a consumer subscribes to the correct set of producers, and to maintain the correct
set of subscriptions during its lifetime. Similarly, entities of an event system using a mediator-
based event model need to acquire the identifiers of the mediators involved, i.e., the
application programmer must track the identifiers to the mediators to which a specific entity
needs to connect. However, mediator-based event models are likely to obtain and maintain a
smaller number of different identifiers compared to peer-to-peer models. There are likely to
be significantly fewer mediators in an event system than producers and their number is
unlikely to change over time 4, certainly compared to the number of producers as they may be
created frequently to provide services for a limited period of time. In contrast, the application
programmer in an event system with an implicit event model is not required to acquire the
identifiers of producers or mediators at all. The application programmer does not need to
explicitly identify the producers with which a consumer needs to communicate as consumers
subscribe to producers transparently using event types. This requires a more sophisticated
event service as it is responsible for locating peers, maintaining the corresponding identifiers,

4 An event system may exploit a single mediator whose reference characteristically remains unchanged,
assuming the absence of failure, during the lifetime of the system.

2 THE TAXONOMY 11

mapping event types to identifiers, and for providing a means to define and check the type of
events.
Most significantly, the event model exploited by an event system affects one of the main
concepts of event-based communications, namely the degree of anonymity among the entities
in the system. The means by which consumers subscribe to the events in which they are
interested and by which events are propagated and delivered influences the degree of
anonymity among them. The peer-to-peer approach permits specific named entities to interact
directly with each other. Consequently, entities are not anonymous to each other. Mediator-
based event models, where entities register with one or more mediators, provide a degree of
anonymity where entities are anonymous to each other but known to the mediator(s). The
implicit approach allows entities to interact anonymously. Such entities are anonymous to
each other and are only known by the event service that implements the mapping of event
types to entities. Nevertheless, entities may choose to identify themselves at the application
level regardless of the degree of anonymity provided by the underlying event model. This
may be useful for example, in applications that wish to assess the level of trust between
producers and consumers.

2.2 Event Service
This section deals with the classification of the properties of event service middleware. As
Figure 9 shows, we divide the properties of an event service into three distinct categories. The
organisation sub tree focuses on the distribution of the producers and consumers as well as the
components of the middleware and on the fashion in which the components that comprise an
event service cooperate. The interaction model defines the communication path over which
event producers and consumers communicate with each other. The feature sub hierarchy
addresses the other (functional and non-functional) features provided by an event service.

Centralised

Separated
Middleware

Collocated
Middleware

Multiple Single

Separated
Middleware

Multiple Single

Collocated
Middleware

Distributed

Organisation

Figure 8. Event service organisation.

2 THE TAXONOMY 12

Event Service

Interaction Model Organisation Features

Figure 9. The event service.

2.2.1 Organisation

As summarised in Figure 8, the organisation sub tree classifies an event service as either
centralised or distributed according to the location of the event system’s entities. These two
sub categories are further divided exploring the location of the event service’s components.
The entities of an event system are centralised if they reside in the same address space on the
same physical machine. In contrast, if the entities of an event system are distributed they
may be located in different address spaces possibly on different physical machines.
Whether the entities of an event system are centralised or distributed, the middleware can be
either collocated or separated.

Address Space

Machine

Address Space

M

Legend:

M

Producer Entity

Consumer Entity

Middleware

Communication

P

C

P

C

P

C

Figure 10. Centralised event service with collocated middleware.

Collocated Middleware. The event service is collocated with the entities if it resides only in
the same address space(s) on the same physical machine(s). As illustrated in Figure 10, the
organisation of a centralised event service with collocated middleware results in both the
entities and the middleware being located exclusively in the same address space. No part of
the event system resides outside the implicit single address space. This organisation may be
used for small-scale applications consisting of a relatively small number of entities, such as
graphical user interfaces. For example, the Java AWT delegation event model is implemented
by the Java Virtual Machine (JVM) to connect the graphical components of an application
sharing their address space with the middleware. Another event service that may be used in a
similar fashion is provided by the C# programming language [22]. In contrast, the
organisation of a distributed event service with collocated middleware results in the
middleware being distributed with the entities, each entity using the part of the middleware
that is local to it. Figure 11 shows the organisation of a distributed event service with
collocated middleware, which may include an arbitrary number of address spaces.

2 THE TAXONOMY 13

Machine

Addr.
Space

Machine

Addr.
Space

M M

Machine

Addr.
Space

M

Machine

Addr.
Space

M

P C

P C

Figure 11. Distributed event service with collocated middleware.

This organisation has been adopted by mSECO, an event service implementing the ECO
event model. mSECO is implemented as a library that is collocated with each entity. Notably,
mSECO is exclusively located in the same address spaces as the entities. Moreover, the
address spaces in which the entit ies reside may or may not be located on different physical
machines. Likewise, STEAM adopts this organisation in order to avoid dependence on a
service infrastructure other than the machines hosting producers and consumers. This enables
STEAM to support the wireless, ad hoc networks for which it has been designed.
Separated Middleware. In this case, the event service is at least partially located in one or
more separate address spaces possibly on different physical machines. We divide separated
middleware into two categories depending on the partitioning of the middleware. Figure 12
depicts an event service with separated single middleware, whose entities are centralised and
whose middleware is located in a separate address space. This organisation uses exactly two
separate address spaces, one including the entities and the other containing the middleware.
The two address spaces may reside on the same or on two different physical machines.
Figure 13 illustrates a distributed event service with separated single middleware, whose
entities are distributed and whose middleware is located on a single machine. This
organisation may involve a large number of address spaces and possibly physical machines,
depending on the location of the entities and the middleware. However, all the address spaces
may reside on a single physical machine. A CORBA event service providing a single event
channel5 serves as an example of such an organisation. Its entities typically reside in different
address spaces distributed over multiple physical machines using an event channel located on
another machine. However, the address space in which the event channel resides may be
located on the same physical machine as some of the entities’ address spaces.

5 The CORBA event service may utilise one or more event channels. For the purpose of this example,
we refer to a CORBA event service utilising a single event channel.

2 THE TAXONOMY 14

Address Space

Machine

Address Space
Address Space

Address Space

M

P

C

P

C

Figure 12. Centralised event service with
separated single middleware.

Machine

Addr.
Space

Machine

Addr.
Space

Machine

Addr.
Space

M

Machine

Addr.
Space

Machine

Addr.
Space

P

C

P

C

Figure 13. Distributed event service with separated
single middleware.

Figure 14 and Figure 15 show event services with separated multiple middleware, whose
middleware is distributed over a set of cooperating address spaces possibly on different
physical machines, for a centralised and a distributed organisation respectively.
Figure 15 also illustrates that some of the middleware’s address spaces may be located on the
same machines as some of the entities. This also applies for centralised entities with separated
multiple middleware. We admit the possibility of an organisation supporting centralised
entities with separated multiple middleware although we cannot provide an example for such
an organisation. SIENA, which uses an organisation as shown in Figure 15, proposes a set of
middleware topologies, called server topologies, of which all but the centralised topology use
middleware that is distributed over a set of cooperating machines.

Address
Space

Machine

Addr. Space

Address
Space

Machine

Addr. Space

M

P C

P C

Address
Space

Machine

Addr. Space

M

Figure 14. Centralised event service with
separated multiple middleware.

Machine

Addr.
Space

Machine

Addr.
Space

Addr.
Space

M

Machine

Addr.
Space

Machine

Addr.
Space

Machine

Addr.
Space

M

P

C

P

C

Figure 15. Distributed event service with
separated multiple middleware.

Discussion. The organisation adopted by an event service has a major impact on issues
related to the scalability of the system, its behaviour in the presence of failed components, and
on the mechanism for communication between entities and the middleware. Conventionally,
approaches containing centralised middleware components are more likely to experience
performance bottlenecks with increasing scale and tend to suffer more in the presence of

2 THE TAXONOMY 15

failures than distributed approaches. The use of middleware located in multiple address
spaces allows the distribution of the communication load reducing the risk of performance
bottlenecks. Instead of having middleware located in a single address space handling all the
communication between the entities in an event system, middleware distributed over multiple
address spaces may divide the load. Exploiting middleware distributed over multiple address
spaces also avoids potential single points of failure in the system. For example, if the
middleware in the organisations illustrated in Figure 10, Figure 12 and Figure 13 fails none of
the entities in the corresponding systems will be able to communicate. In contrast, a
middleware component failing in one of the organisations depicted in Figure 11, Figure 14, or
Figure 15 has a less devastating effect on an event system allowing the entities to
communicate even in the presence of failure. Significantly, this depends on the middleware
being located in multiple address spaces and not on the distribution of the entities in a system.
The organisation of an event service also affects the mechanism through which entities
communicate with the middleware. Approaches where entities and middleware reside in
different address spaces distributed over different physical machines require a mechanism that
supports cross-network communication. A much simpler inter-process communication
mechanism may be sufficient for organisations where entities and middleware reside in
different address spaces on the same physical machine. Entities and middleware sharing an
address space may communicate using a programming-language-specific mechanism, such as
procedure call or method invocation.
This taxonomy may serve as a basis for identifying the combinations of event system
properties that are well suited as well as the combinations that are less suited or even
incompatible. For instance, mediator-based event models map well onto event service
organisations with separated middleware. Separated middleware residing in an independent
address space may naturally implement a mediator to which producers and consumers may
connect. Peer-to-peer and implicit event models are well suited for organisations with
collocated middleware. These organisations allow entities to directly connect to each other
using interfaces specified by the collocated middleware, which provides a means for mapping
events and their types to entities. In addition, the centralised organisation with collocated
middleware may map onto mediator-based event models as the collocated middleware may
implement a mediator. In contrast, combinations based on separated middleware and peer-to-
peer event models, are less suitable as peer-to-peer models imply that entities interact directly.

2.2.2 Interaction Model
The interaction sub tree classifies an event service according to the interaction model used
by the event system. Generally, the interaction model defines the communication path over
which event communication between event producers and consumers takes place. It defines
the number of intermediate middleware components involved and the manner in which
intermediates cooperate to route events from the producers to consumers. Compared to the
organisation model, which focuses on the distribution of the entities and the middleware of an
event system, i.e., providing a static view of an event service, the interaction model describes
the information flow in an event system. Hence, it describes the dynamic aspect of an event
service.
As Figure 16 depicts, we divide the interaction model into two main categories, namely
intermediate and no intermediate, exploring whether and how many intermediate middleware
components an event passes through.

2 THE TAXONOMY 16

Intermediate

Distributed
Intermediate

Partitioned

Implicit Named Point to Point

No Intermediate

Interaction Model

Cooperative

Non-Hierarchical Hierarchical

Multiple Single

Centralised
Intermediate

Figure 16. Event service interaction model.

No Intermediate. The communication path over which event communication between
producers and consumers takes place does not include separated intermediate middleware
components. Producers and consumers communicate with each other through the middleware
collocated with each entity. As Figure 17 illustrates, events that are routed from producers to
consumers pass through the collocated middleware, but not through any intermediate
middleware component.

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Figure 17. No intermediate.

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Event Service Event Service

Figure 18. Distributed intermediate.

We sub divide this model into three categories according to the means by which entities
address each other. These interaction models are called the point-to-point, named, and
implicit models.
Producer and consumer entities may communicate directly with each other in a point-to-
point fashion, using explicit entity addresses, which are provided by the application. The

2 THE TAXONOMY 17

middleware uses explicit entity addresses and a unicast communication pattern when routing
events from producing to consuming entities. The Java distributed event model allows
producers to route events to the subscribed consumers using the explicit consumer addresses
provided by the application.
Producer and consumer entities may communicate directly with each other using a name
service to map event descriptions, such as event types, to entity addresses provided by the
application. The middleware uses either a unicast or a multicast communication pattern to
route events from a producer to the interested consumers. uSECO uses a name service, called
the Application Instance Repository (AIR), to resolve the addresses of the entities that are
interested in a specific event type and a unicast communication pattern to route events.
Producers and consumers may communicate directly with each other using an implicit means
to map event descriptions to entity addresses provided by the application. The middleware
uses a multicast communication pattern when routing events from producers to consumers.
mSECO, a multicast version of the uSECO event service, does not rely on an AIR since it
uses an implicit means, based on generating addresses from event descriptions, to map events
to the multicast addresses representing the interested consumers.
Intermediate. The communication path over which event communication between producers
and consumers takes place includes at least one separated intermediate middleware
component. Thus, events that are routed from producers to consumers pass through one or
more intermediate middleware components.
The intermediate interaction model is divided into two sub categories according to the number
of intermediate middleware components in the communication path. In the centralised
intermediate model, the communication path includes a single intermediate middleware
component. In contrast, the distributed intermediate model involves two or more
intermediates through which events are routed. Figure 18 depicts the distributed intermediate
interaction model with a communication path that includes two distributed intermediates.
Both centralised and distributed intermediates can be divided further. We classify centralised
intermediates according to their number as an event service may exploit one or multiple
centralised intermediates.
All communication paths between producing and consuming entities may include the same
single centralised intermediate. An event system using this interaction model includes exactly
one centralised intermediate. In contrast, an event system may exploit multiple centralised
intermediates. In this case, producers and consumers are divided into groups and all
communication paths between the producers and consumers within each group include a
centralised intermediate that is specific to that group. This results in an event system that uses
several centralised intermediates, the number of which corresponds to the number of groups.
Multiple centralised intermediates may be used to support groups of entities that share a
common interest. The common interest of an individual group may be expressed by a specific
type of event that is handled exclusively by a particular centralised intermediate. For example,
the CORBA event service may utilise multiple centralised intermediates implemented as
event channels. Each channel may handle a specific type of event exclusively. Producers and
consumers intending to communicate using a specific event type connect to the corresponding
event channel, therefore defining the communication path over which event communication
takes place. Alternatively, the CORBA event service may use a single centralised
intermediate implemented as a single event channel through which all events are routed.
Figure 19 and Figure 20 illustrate the single centralised intermediate and multiple centralised
intermediate interaction models respectively. Figure 20 shows two groups of entities, each
comprising of a producer and a consumer using a single centralised intermediate through

2 THE TAXONOMY 18

which events are routed. The communication path associated with one group is outlined with
solid arrows and the communication path associated with the other is depicted using dashed
arrows.

Event Service

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Figure 19. Single centralised intermediate.

Application

Event Service

C

Application

Event Service

P

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Event Service Event Service

Figure 20. Multiple centralised intermediate.

We classify distributed intermediates as partitioned or cooperative according to the fashion in
which intermediates cooperate to route events from event producers to consumers.
Generally, the distributed intermediate interaction model includes two or more intermediate
middleware components in the communication path between consumers and producers. An
event service implementing the partitioned distributed intermediate interaction model
consists of a number of independent groups of intermediates, each group handling only a
specific type of event. Entities sharing a common interest need to connect to the group that
handles the type of event that corresponds to their common interest. For example, the
CORBA event model specification proposes to chain different implementations of event
channels, acting as a group of partitioned distributed intermediates, in order to combine non-
functional features supported by individual event channels.
In contrast, cooperative distributed intermediates do not form independent groups, all
intermediates cooperate to route events from consumers to producers. Entities connect to the
most convenient, e.g., physically closest, intermediate. Each intermediate manages the events
for the entities that are physically connected to it and cooperates with other intermediates to
route them to remote entities. Cooperative distributed intermediates cooperate with each other
either in a hierarchical or in a non-hierarchical manner.
JEDI proposes a hierarchical structure of cooperative distributed intermediates, called
dispatching servers. Dispatching servers are interconnected in a tree topology through which
events are routed. Entities may connect to any dispatching server, each of which forwards the
events it receives from the producers connected to it to its parent and to its descendants to
route them to all interested consumers. SIENA describes four different topologies of
cooperative distributed intermediates. One of them serves as an additional example of
hierarchical cooperative distributed intermediates, another two, namely the acyclic and the so-
called peer-to-peer topologies, illustrate non-hierarchical cooperative distributed
intermediates.
Burcea et al. [58] use a tree-based topology of cooperative distributed intermediates in a
simulation of a network of ToPSS event brokers servicing an urban area. Producers may be
co-hosted with and consumers may connect to any of these intermediate brokers. Brokers

2 THE TAXONOMY 19

route events from producers to subscribers and are capable of storing state for deferred
transfer to temporarily unavailable subscribers.
Gryphon assumes a network of non-hierarchical brokers to which producers and consumers
can connect at their convenience. Gryphon organises these brokers into a logical tree
structure, called the spanning tree, that allows for efficient matching of events to subscribers,
i.e., to efficiently determine the set of consumers interested in a specific event. Hermes
introduces the notion of an overlay routing network for organising a network of nodes into a
non-hierarchical application-level network of event brokers. Producers and consumers
connect to the broker network and individual brokers subsequently route events through the
overlay network.
Discussion. Mediator-based event models map naturally onto interaction models that include
intermediate middleware components. For example, interaction models using either multiple
centralised or partitioned distributed intermediates may implement event models that include
multiple non-functionally equivalent mediators. These event models expose mediating
application components to the application, which must ensure entities subscribe to the correct
intermediate middleware component. Cooperative distributed intermediates may implement
multiple functionally equivalent mediators whereas a single centralised intermediate may
implement an event model based on a single mediator. Both the named and the implicit
interaction model are appropriate for implicit event models, since neither of them relies on
intermediates and because implicit event models do not prohibit the use of middleware
components providing naming services. The peer-to-peer event model exposes entities
explicitly to the application. It is therefore best implemented by a point-to-point based
interaction model using these entity addresses to route events from producers to consumers.
There are numerous possible combinations of interaction and organisation models as many
organisations are appropriate for different interaction models. For example, both centralised
and distributed organisations with separated middleware are suitable for interaction models
whose communication paths between producers and consumers involve intermediate
middleware components. Distributed organisations with collocated middleware may be
combined with interaction models that do not rely on intermediates. Centralised organisations
with collocated middleware may possibly be combined with every interaction model.
Although centralised collocated organisations may be best suited for the single intermediate
interaction model as its middleware component maps naturally onto a single intermediate, it is
also appropriate for the implicit interaction model with its middleware component
implementing a means to map event types to entity addresses.

2.2.3 Features
The features supported by an event service can be classified as either functional or non-
functional as shown in Figure 21.
These functional and non-functional features address requirements regarding the functional
and non-functional behaviour of a system. Functional requirements are statements of services
a system should provide, how a system should react to particular inputs and how a system
should behave in particular situations. In some cases, the functional requirements may also
explicitly state what a system should not do [60, p.118]. Non-functional requirements are
constraints on the services or functions offered by a system. They include timing constraints,
constraints in the development process, standards to be adopted and so on [60, p.119].
Based on these definitions, we classify the functions made available by an event service as
functional features and consider constraints on (or properties of other) system attributes as
non-functional features. For example, we classify mobility support as a functional feature

2 THE TAXONOMY 20

because it describes services to enable event-based communication for mobile entities but
threat security as a non-functional feature since it describes techniques that address how
event-based communication is secured.

Functional

Event
Type

Non-Functional

Features

Event Propagation
Model

Event
Filter

QoS Mobility Ordering Failure Mode Composite
Events

Security

Figure 21. Event service features.

2.2.3.1 Functional Features
Event Propagation Model. Events are delivered by an event service according to an event
propagation model. Figure 22 depicts the event propagation model sub hierarchy and shows
how the event propagation model is divided into two categories describing sporadic and
periodic event propagation. Sporadic event propagation models propagate events only if the
relevant state of the producer has changed. Periodic event propagation models propagate
events periodically, even if no state change has occurred since the last event.
Both sporadic and periodic event propagation can be based either on the push or the pull
model. The sporadic push model is considered the traditional event propagation model and is
therefore most likely to be supported by an event service. However, an event service may
support several of the propagation models shown in Figure 22.
Event propagation based on the sporadic push model is producer-driven and producers
propagate events as they are generated. The sporadic push model is supported by many event
models including the Java AWT delegation event model, CORBA-based event models,
Mobile Push, Obvents, ToPSS, and STEAM.
Event propagation based on the sporadic pull model is also known as event polling. Event
propagation is consumer-driven as consumers poll producers for available events. Event
producers propagate events in response to requests from consumers. Among others, this
propagation model is supported by the CORBA notification service, by Obvents, and by
ToPSS.
Event propagation based on the periodic push model is well suited for “heartbeat” or
“watchdog” mechanisms as well as for disseminating events according to a predefined
schedule. Event propagation is producer-driven and producers propagate events periodically.
Both the COSMIC and TAO RT CORBA event services use the periodic push propagation
model as a means to statically schedule event propagation while reserving the required
resources for events that have hard real-time delivery deadlines.
Event propagation based on the periodic pull model represents traditional polling. Event
propagation is consumer-driven as consumers poll producers periodically. Producers
propagate events in response to requests from consumers.

2 THE TAXONOMY 21

Periodic event propagation models imply that events with identical content may be
propagated as the state of the producer may not have changed since the previous event was
propagated. We argue that periodic events still conform to our definition of events when
considering the passage of time as a change to a producer’s state even though periodic events
may not contain an explicit description of time.

Push Pull Push Pull

Sporadic Periodic

Event Propagation
Model

Figure 22. Event propagation model.

Event Type. Events propagated by an event service can be classified according to their
structure and hence are said to be of a specific event type. As outlined in Figure 23, we
differentiate between generic and typed events.
The information that constitutes a generic event, which is also known as an un-typed event, is
a data blob with an implicit structure. The structure is neither recognised nor interpreted by
the event service. The CORBA event service is one of the few event services that supports
propagation of generic events.
In contrast, the information that describes typed events includes an explicit and expressive
structure that may be recognised and interpreted by the event service. Typed events enable
the use of event filters.
Event types are represented by a structure with varying expressive power. The expressive
power of an event type describes the variety of information that they can be included in an
event of that type. The expressive power of the structures outlined in Figure 23 increases from
left to right.
The structure that represents an event type is either fixed or application-specific. The former
is predefined by the event service whereas the latter may be defined by the application.
Both fixed and application-specific structures can be sub divided. Fixed structures consist
either of a name, a name and some numeric parameters, or a name and some string
parameters. A name usually consists of a single string. The name and string parameters
structure therefore consists of a set of strings. The first string representing the event name and
the remaining strings representing the event parameters. JEDI uses an event structure
consisting of a name and a set of string parameters. The name and numeric parameters
structure consists of a single string and a set of numbers: the string representing the event
name and the numbers representing the event parameters. The version of CEA described by
Bacon et al. [31] supports typed events that consist of a structure consisting of a name and a
set of number parameters. Application-specific structures consist of either attributes or an
object. The attributes structure consists of a set of attributes in which each attribute is a triple
of name, type, and value. The CORBA notification service supports a general event structure
consisting of attributes. The object structure consists of a programming-language-specific

2 THE TAXONOMY 22

object including a set of attributes. One of the key properties of both ECO and Obvents is
their support of events in the form of specific application defined objects.
Event types may be organised into type hierarchies. Such event type hierarchies are similar
to class hierarchies in object-oriented programming languages like Java or C++ in that event
types can be derived from each other. Specialised event types can be derived from more
general event types using inheritance. Event filters that match events of a certain general type
will also match events of sub-types derived from that general type. Hermes is an event service
that centres around the notion of event types and supports event type hierarchies.

Expressive
Power

Generic

Event Type

Typed

Fixed

Name and Number
Parameters

Name and String
Parameters

Application
Specific

Object Attributes Name

Type
Hierarchies

Supported Omitted

Figure 23. Event type.

Expressive Power

Event Filter

Evaluation Implementation Definition Location

Figure 24. Event filter.

Producer,
Consumer and
Intermediate

Location

Producer and
Consumer

Intermediate Producer Nowhere Producer and
Intermediate

Consumer Consumer and
Intermediate

Figure 25. Event filter location.

2 THE TAXONOMY 23

Event Filter. Event filters control the propagation of events by allowing consumers to
subscribe to the exact subset of the events in which they are interested. Events are matched
against filters and are only delivered if the match produced a positive result. Figure 24 shows
the properties according to which we classify event filters.
Event filters must be evaluated at a particular location. If supported, event filters may be
evaluated at the consumer side, the producer side or at the intermediate. Furthermore, a set of
event filters may be evaluated sequentially at more than one location, thus they may be
applied at any combination of consumer, producer, and intermediate. Figure 25 summarises
all possible combinations of event filter locations.
Filters are not supported and events are consequently propagated to all subscribers. The
CORBA event service is an example of an event service that does not support event filters.
Filters are evaluated at the producer side. This minimises the use of network bandwidth and
consumer processing overhead as events are filtered as close to the producer as possible.
SECO serves as an example of an event service that supports producer-side filtering.
Filters are evaluated at the consumer side. This allows an implementation of a precise
matching algorithm as the required set of events is typically well-known at the consumer side.
The Java distributed event model allows filters to be applied at the remote event listener.
Filters are evaluated at the intermediate . This is a natural location for service-wide filters (as
well as quality of service properties) since all events are propagated through the intermediate.
Filters are evaluated at the producer and the consumer side. ECO supports filters in the
form of pre- and post constraints, which may be applied at the producer and the consumer
side respectively.
Filters are evaluated at the producer side and at the intermediate thereby combining the
characteristics of producer-side and intermediate filter evaluation.
Filters are evaluated at the consumer side and at the intermediate . In addition to allowing
filtering at the remote event listener, the Java distributed event model supports optional event
adapters at which filters may be applied as well.
Filters are evaluated at the producer and the consumer side, as well as at the intermediate.
The CORBA notification service supports filtering in a hierarchical manner that allows filters
to be evaluated at the producer and the consumer side, as well as at intermediates.
As shown in Figure 26, event filters can be defined by the application by using a constraint
language that is specified as part of the event service or by using the features of an
application programming language . The CORBA notification service specifies a constraint
language that allows applications to use constraint expressions to define event filters. When
using a programming language to define event filters, applications may use a subset of the
types, operators, and combinators supported by the programming language or may be
permitted to use all types, operators, and combinators supported by the language. SIENA
limits applications to using a specific subset of the types, operators, and combinators available
whereas SECO allows them to use all available types, operators, and combinators.

2 THE TAXONOMY 24

Constraint
Language

Definition

Programming
Language

Language Subset

Figure 26. Event filter definition.

Figure 27 summarises possible implementations techniques for event filters. An event filter
can be implemented using either a character string, a function, or an object. Character strings
can provide a textual representation of filter expressions that are typically parsed by the event
service applying them. Filters that are implemented as functions are applied by executing
these functions. Object filters must be instantiated before they can be applied by invoking a
method of the object. Both the CORBA notification service and SIENA implement event
filters as strings that are parsed at run time whereas SECO filters are implemented as objects
providing an evaluate() operation.

String

Implementation

Object Function

Figure 27. Event filter implementation.

Event filters are evaluated by the event service to determine the list of interested subscribers.
As shown in Figure 28, event filters are evaluated at a particular time using a specific
mechanism to match events against filters.
The evaluation mechanism is divided into two sub categories depending on whether filter
specifications are interpreted or compiled. The former are characteristically evaluated using
an event model specific interpretation mechanism while the latter can be evaluated using
operations provided by the programming language. Both interpretable and executable filters
are either generated by a pre-processor or are implicitly provided by the application. The
CORBA notification service specifies a constraint language that allows applications to
implicitly provide filter expressions that are interpreted by the evaluation mechanism.
STEAM on the other hand, allows applications to implicitly define and then to compile their
filters.
Event filters are evaluated either at subscription time or at event propagation time.
Evaluating filters at subscription time may be useful when matching parameters describing
the current context of the subscriber that are only relevant at that point in time or when
matching pre-constraint filters. Such pre-constraint filters may assess the availability of
resources, authenticate a connection, or process admission control. However, event services,
including the CORBA notification service, SIENA, STEAM, Elvin, and COSMIC,

2 THE TAXONOMY 25

traditionally evaluate event filters at event propagation time when the actual list of interested
subscribers can be determined.
Figure 29 summaries issues related to the expressive power of event filters. Event filters may
be defined using an expressive structure that is described using a set of types, operators, and
combinators.
The structure enclosed in an event filter may contain a set of types with varying expressive
power. These sets are either implicit or predefined by the event service and their expressive
power generally increases with the number of types they comprise. While both implicit and
predefined sets can contain one or more types, predefined sets are typically larger and hence
more expressive than implicit sets.
JEDI and CEA [31] are examples of event models supporting implicit types. Both of them
support string types while CEA provides a second implicit type, namely number. In contrast,
event models such as SIENA and STEAM provide predefined sets comprising a larger
number of types.
An event filter may contain a set of operators with varying expressive power. From left to
right, the sets outlined in Figure 29 are supersets of each other and hence increase in their
expressive power. The filter may support equality and inequality operators, less than and
greater than magnitude operators that may be combined with equality operators, or
magnitude operators that can be combined to form range operators. JEDI and CEA only
support equality operators whereas SIENA and STEAM support equality, magnitude, and
range operators.
An event filter may employ a set of combinators with varying expressive power that may be
used to combine terms including types and operators. The expressive power of the set of
combinators outlined in Figure 29 increases from left to right. The structure may not contain
any combinator or may contain either a single implicit combinator or an arbitrary number of
combinators. CEA supports an implicit conjunctive combinator that requires all terms defined
by a specific filter to match individually for the filter to return a positive result while SIENA
and STEAM provide a range of arbitrarily applicable combinators. STEAM filters are defined
as a collection of either conjunctive or disjunctive terms. These filter terms are matched
against the relevant parameters of an event either in a conjunctive or a disjunctive manner,
thus defining whether all or at least one of the terms that comprise a filter must be true for the
filter to match.

2 THE TAXONOMY 26

Mechanism

Compiled

Implicit Pre-processed

Interpreted

Implicit Pre-processed

Time

Propagation Subscription

Evaluation

Figure 28. Event filter evaluation.

Expressive Power

Implicit

Combinator

Implicit None Arbitrary

Operator

Magnitude Equality Range

Type

Predefined

Figure 29. Event filter expressive power.

Mobility. Another functional event service property, which is becoming increasingly
important with the emergence of wireless communication, is support for entity mobility.
Figure 30 summaries the degree of mobility that may be provided by an event service.
Many event services do not support mobility; all entities in such an event system are assumed
to have a static location. However, an event system may contain entities that may move
location from one host machine to another thereby assuming the address of the current host
machine. The mobile code category refers to event services that support entities that can
move from one computer to another and subsequently execute at their destination. JEDI
supports this feature through its concept of reactive objects. Loke et al. [38, 39] propose an
extension to Elvin that enables mobile code, referred to as mobile agents, to migrate from one
host to another in order to perform computations on behalf of mobile multi-agent applications.
The mobile device category refers to event services that support portable computing devices,
such as notebook computers and handheld devices, which may move location while keeping
their addresses, thereby moving the entities they host. Mobile devices may host nomadic and
collaborative entities and may be capable of wireless networking. Nomadic entities interact
through either a fixed network infrastructure or a mobile computing environment to which
they connect via nodes acting as access gateways. Characteristically, they may suffer periods

2 THE TAXONOMY 27

of disconnection while moving between points of connectivity. For example, SIENA’s
mobility support service allows nomadic entities to connect to proxy components using
wireless connections based on General Packet Radio Services (GPRS) [61] technology. These
proxy components run on event servers that act as access points and transparently manage
(and synchronise) subscriptions and events on behalf of a moving entity. Mobile Push and
ToPSS propose a similar approach to supporting nomadic application components in which
entities disconnect from the event service infrastructure while moving. ToPSS supports
application scenarios in which nomadic entities disconnect for substantial periods of time as
well as those where disconnection periods are very short. The former scenario reflects the
behaviour of subscribers accessing the event service at distinct locations with considerable
commuting times from one area of connectivity to another whereas the latter characterises
subscribers employing handover mechanisms when roaming between overlapping
connectivity areas.
Nomadic entities may access the event service infrastructure either through fixed or wireless
connections. In contrast, collaborative entities use a wireless network to interact with other
mobile entities that have come together at some common location. Collaborative entities may
use ad hoc networks to support communication without the need for a separate infrastructure,
thus allowing loosely-coupled entities to communicate and collaborate in a spontaneous
manner. STEAM exploits geographical scopes, called proximities [62], in order to
accommodate collaborative entities. It allows entities residing in the same proximity to
dynamically establish wireless ad hoc connections to one another and subsequently to deliver
events at the location of the proximity.

Mobile Code

Mobility

Static Entity

Collaborative
Entity

Nomadic Entity

Mobile Device

Figure 30. Mobility support.

Composite Events. Subscribers may require an event service to recognise the occurrence of a
specific pattern of two or more particular events possibly propagated by different producers.
Services inform subscribers of such a combination of event occurrences by means of a
notification called a composite event. Subscribers express their interest in composite events
by defining what can be termed composite event filters, which specify the sequences of event
occurrences of interest, typically using an application-level language.
Composite event filters can be applied analogously to ordinary event filters. However, the
location at which composite event filters may be evaluated depends on the locations of the set
of producers potentially propagating relevant events. Composite event filters must be
evaluated at a location included on the propagation paths of all events of interest. For
example, composite event filters for recognising event patterns composed of events
propagated by several distributed producers generally cannot be evaluated at the producer

2 THE TAXONOMY 28

side. Such composite event filters must be evaluated at an intermediate, at the consumer side,
or at a combination of consumer and intermediate. Furthermore, when intermediates are
distributed, composite event filters must be evaluated at an intermediate located on all event
propagation paths.
As depicted in Figure 31, an event service may omit composite events. However, when
supported, the occurrence of composite events causes the service to notify subscribers
accordingly. Subscribers may specify the number of the events involved, their logical
relationship, and the time window in which the events involved must occur. Exactly two or
three or more events may be defined in a pattern that describes their sequence of occurrence
along with a time window that may be defined implicitly by the event service or explicitly by
the subscriber application. This window defines the time interval during which a certain
number of events must occur in a given pattern for composite events to be detected.
As part of their work on CEA, Bacon et al. [63] have defined an application-level language
for specifying sequences of event occurrences of interest. Monitors then use a combination of
event filters to detect composite events that conform to these sequences. Pietzuch et al. [64,
65] propose a general composite event detection framework that is similar to the CEA
approach in that it also introduces a high-level specification language for event occurrences of
interest. However, this framework has been designed independently of specific event system
and as such, can accompany a range of existing event-based middleware architectures. The
language for composite event specification can be used to express patterns including sequence
(event1 followed by event2), alteration (event1 or event2), and parallelisation (event1 and
event2). The interval timestamp model [66] has been adopted for handling the clock
uncertainties that are intrinsic to distributed systems.
Other specification languages for the detection of composite events have been proposed by
Mansouri-Samani and Sloman [67] as well as by Chakravarthy and Mishra [68]. GEM [67] is
a generalised event monitoring language that is based on rules. It proposes a tree-based
approach for composite event detection and supports temporal constraints. Snoop [68] is an
expressive event specification language designed to accommodate the requirements of a wide
range of applications. It is event-model independent and focuses on supporting powerful
temporal constraints.

Supported

Time

Explicit Implicit

Number

Three or
More

Two

Composite Events

Omitted

Relationship

Figure 31. Composite events.

2 THE TAXONOMY 29

Real Time

Soft Best
Effort

Quality of Service (QoS)

Hard

Priority

Alarm No Multiple

Store Occupancy

Implicit Configurable

Reliability

Reliable
Connection

Persistent Best
Effort

Figure 32. Quality of service.

2.2.3.2 Non-functional Features

Quality of Service. The QoS of an event service may be configured according to the
requirements of a particular application. Figure 32 shows that we divide the QoS supported by
an event service into four categories describing the behaviour of an event service when
propagating and delivering events.
The real-time category explores the guarantees provided by an event service regarding the
timely delivery of events. Real-time guarantees can be either best-effort, soft or hard. In the
best-effort case, no deadlines can be associated with events. An event service supporting soft
real-time provides guarantees with a probability that is sufficient to be used for soft real-time
deadlines and a hard real-time service provides guarantees with a probability that is
sufficiently high to be used for hard real-time deadlines. Hard real-time guarantees must meet
their temporal specification in all anticipated load and fault scenarios [69]. The CORBA
notification service allows deadlines defining earliest and latest delivery time to be assigned
to events that are enforced with a probability that is sufficient to be used for soft real-time
deadlines. Generally, hard real-time guarantees are difficult to provide as they require a
predictable communication pattern, usually only available in a small-scale environment. This
is particularly true for distributed event systems. Distributed event systems are traditionally
based on anonymous one-to-many communication patterns that tend to be unpredictable and
are likely used in systems consisting of a large number of loosely-coupled entities. However,
the TAO RT event service, an extension to the CORBA event service that was developed for
avionics applications, supports hard real-time guarantees. COSMIC uses event channels as an
abstraction for network resources and allows applications to assign timeliness properties to
channels. It supports best-effort guarantees in the form of non real-time event channels as
well as soft and hard real-time guarantees through soft real-time channels and hard real-time
channels respectively.
In order to influence the sequence in which events are delivered, a priority may be assigned
to an individual event. Usually, no priority can be assigned and therefore all events have
identical priority. An event service that supports alarm events allows a single priority to be
assigned to certain events. The CORBA notification service provides multiple priorities.
Store occupancy describes the maximum size of memory required by an event service to
operate at any point during its lifetime. This size can be either implicit or it may be
configurable according to the requirements of a particular application. Implicit store
occupancy either imposes a fixed maximum memory size or allocates the required memory
dynamically whereas configurable store occupancy typically depends on a number of

2 THE TAXONOMY 30

parameters. These parameters may describe the maximum size of the queues that buffer
events as well as the maximum number of producers, consumers, and mediators that may be
supported by an event service.
The reliability category investigates the guarantees provided by an event service regarding
the delivery of events in the presence of failure. An event service is said to provide best-
effort reliability if no specific delivery guarantees are made. Events may or may not be
delivered to subscribers in the presence of failure. An event service that supports reliable
connections guarantees events being delivered to all correctly functioning subscribers. Upon
restart from a failure, connections between producers and subscribers are re-established
without re-subscription and event delivery resumes. A persistent event service guarantees
events being delivered to all subscribers. Upon restart from a failure, connections between
producers and subscribers are re-established without re-subscription and persistently buffered
events are retransmitted. The CORBA notification service may support any of these three
delivery policies.
Ordering. An event service delivers events according to a certain ordering semantic. Figure
33 shows that an event service may deliver events in a certain order in a subset of the system
or system wide , i.e., throughout the system. Event services with a system wide ordering
strategy employ exactly one delivery order whereas event systems with subset orders
associate different ordering strategies with various parts of the system.

Subset

Ordering

FIFO Any Total Causal Priority Deadline

System Wide

Fifo Any Total Causal Priority Deadline

Figure 33. Ordering.

Events may be delivered in any order. Such unordered events may be received by any
subscriber in any order. FIFO order refers to a strategy where two events that are raised by
the same producer are delivered by consumers with matching subscriptions in the order in
which they were raised. Causally-ordered events are delivered in the order they were
published as determined by the well-known happens-before relationship [70] while totally-
ordered events are delivered in the same order by all subscribers but not necessarily in the
order they were raised [71]. Mechanisms for providing unordered and FIFO order semantics
are generally relatively straightforward since they do not require distributed coordination. In
contrast, enforcing causal and total order semantics requires cooperation between all
producers and consumers involved.
Alternatively, events may be delivered according to an associated priority or deadline . These
semantics imply that the delivery of some event can be pre-empted in order to deliver an
event that has a higher priority or to deliver an event that has a deadline that is close to
expiring. Ordering in real-time systems may also be determined by deadlines.

2 THE TAXONOMY 31

The CORBA notification service supports various semantics for defining event delivery order
for a specific event channel, including any, FIFO, priority, and deadline order. This approach
allows applications with a single event channel to define a system wide order and applications
comprising multiple channels to associate a specific order with each channel. CONCHA and
TAO RT are other CORBA-based event services that support delivery order semantics.
CONCHA features totally-ordered event delivery and TAO RT CORBA provides a
dispatching mechanism for priority-based event delivery.
Security. As discussed below, event services can support a number of mechanisms to
alleviate the security concerns that may arise in applications that disseminate events among a
population of distributed producers and consumers. However, the event model that is
exploited for such applications can have an impact on security concerns as some models are
more secure than others. Peer to peer models, in which explicitly named entities interact
directly, can be considered more secure than mediator-based models where interaction
requires a trusted mediator (or group of mediators) or indeed implicit models where the
middleware as a whole must be trusted.
Event services may omit mechanisms that address security concerns or may support security
properties by providing techniques for event message confidentiality and for authentication.

Supported

Authentication

Set of Events

Confidentiality

Individual Event

Security

Omitted

Figure 34. Security.

Event messages that contain sensitive content may be transmitted over a network in an
encrypted and therefore confidential form rather than as plain text. This enables producers and
consumers to keep event messages secret from third parties. For example, Elvin supports a
security framework that exploits the Secure Socket Layer (SSL) protocol for managing the
security of its message transmissions over the Internet.
Essentially, authentication establishes the identity of specific events and serves as the basis
for a mechanism that polices access to certain operations. Such an access control mechanism
may regulate access privileges for event dissemination, forwarding, and delivery. Access may
be granted to an individual event or to a set of events . Such a set of events may be defined
by various means. Access may be granted to events of a specific type, to the events
disseminated by a specific producer or a group of producers, to the events described by a
subscription or by the subscriptions issued by a certain consumer, or to the events handled by
a particular mediator. For example, Elvin’s security framework enables servers to authorise

2 THE TAXONOMY 32

access to events using keys, which may be associated with either a connection to a specific
entity or an individual event.
Wang et al. [72] outline security issues in event services without attempting to present an
actual security model. Their work specially focuses on Internet-scale event systems and
discusses security paradoxes, such as anonymity vs. authentication, that arise due to the nature
of event systems.
Failure Mode. The failure mode describes the behaviour of an event service in the presence
of a single component failing silently. A fail-silent component is a self-checking component
that either functions correctly or stops functioning after an internal failure is detected [73]. As
outlined in Figure 35, the failure mode category explores support for the failed component
being an entity, a middleware component, or a part of the network.
A failed entity may be either a consumer or a producer. A failed consumer does not cause
the remainder of the system to suffer. A failed producer causes a partial or a total system
failure. A partial system failure affects the communication related to some event types that
may result in fewer events being propagated. No event communication can take place in case
of a total system failure . A system consisting of a single producer and a number of
consumers fails totally if the sole producer fails silently.
A middleware component failing silently causes a partial or a total system failure similar to
the effect of a failed producer. A partial system failure affects either a geographical or a
functional part of the system. The former disconnects a part of the system from the rest of the
system. Event communication may take place within the partitions, but no event
communication takes place between the partitions. A geographical partial system failure may
be caused by a failing SIENA event server that is part of a hierarchical or an acyclic non-
hierarchical server topology. The latter stops communication related to a particular event type
throughout the system. However, communication related to other event types does not suffer.
A functional partial system failure may be caused by a failed event channel in a CORBA
event service utilising multiple channels, each managing a specific event type. A failing
centralised JEDI event dispatcher causes a total system failure.
A part of the network failing silently may be redundant or may cause partial or total system
failure. A redundant part of the network failing in SIENA utilising a general non-hierarchical
server topology may not cause the remainder of the system to suffer. Similarly, Hermes’
overlay routing layer enables a system to overcome failures in redundant parts of the network
by using an adaptive routing strategy.
A partial system failure disconnects a part of the system from the rest of the system. Event
communication may take place within the partitions, but no event communication takes place
between the partitions. SIENA utilising an acyclic non-hierarchical server topology and
Rebeca, which assumes an acyclic non-hierarchical network topology, behave in this manner.
A system in which all producers are connected through a single network is susceptible to total
system failure where no event communication can take place.

2 THE TAXONOMY 33

Entity

Failure Mode

Middleware Network

Producer

Partial System
Failure

Total System
Failure

Partial System
Failure

Functional Geographical

Total System
Failure

Consumer Redundant Partial System
Failure

Total System
Failure

Figure 35. Failure mode.

3 CLASSIFICATION OF EVENT SYSTEMS 34

3 Classification of Event Systems

Table 2 illustrates how a taxonomy user may apply the taxonomy to existing event systems. It
presents a number of selected event services that have been summarised using the
terminology of the taxonomy presented in this paper. These event services have been selected
to cover various properties and because sufficiently detailed documentation is available to
describe them. The CORBA notification service has been chosen due to its widespread use
and due to its support of a wide range of non-functional features. SIENA, SECO, and Hermes,
which have been designed in academia, have been chosen because of their organisational and
interaction models as well as their exploitation (or lack) of event server topologies.
Table 2 demonstrates that using a common vocabulary for describing event services facilitates
comparison of service properties. For example, Table 2 shows that both, the CORBA
notification service and SIENA are based on an event model that includes either a single
event server or a topology of multiple event servers and that the SECO event model excludes
the use of such mediators altogether. It also shows that Hermes’ fault tolerance mechanisms
alleviate the effects of failed middleware components once its overlay routing layer has
adapted. The implementation of Hermes’ client-side programming model is application-
specific since Hermes defines the set of Extensible Markup Language (XML) [74] messages to
be exchanged across brokers and clients but not the bindings between client programming
language and these XML messages. The programming model properties shown are based
upon the Java version of a client implementation proposed in [44]. Moreover, Pietzuch [44]
proposes a set of higher-level middleware services for composite event detection, security,
and congestion control that can be built on top of Hermes. However, these services are not
intrinsic to Hermes and as a result, were not considered in Table 2.

Table 2. Categorisation of event systems.

 CORBA
Notification Service SIENA SECO Hermes

Event Model

Single mediator or
multiple, non-
funct ionally

equivalent mediators

Single or multiple
mediators

Implicit Multiple mediators

Event Service
Organisation

Single or multiple
distributed, separated

middleware

Single or multiple
distributed, separated

middleware

Distributed,
collocated middleware

Multiple distributed,
separated middleware

Event Service
Interaction Model

Centralised
intermediate or

partitioned,
distributed

intermediate

Centralised
intermediate or

cooperative,
distributed

intermediate

No Intermediate,
named (uSECO) or
implicit (mSECO)

Cooperative,
distributed

intermediate

Functional Event Service Features

 Event Propagation
 Model

Sporadic push and
pull

Sporadic push Sporadic push Sporadic push

 Event Type Typed Typed Typed Typed

 Expressive
 Power

Application specific
attributes

Application specific
attributes

Application specific
object

Application specific
object

 Type
 Hierarchies

Omitted Omitted Omitted Supported

 Event Filter

3 CLASSIFICATION OF EVENT SYSTEMS 35

 CORBA
Notification Service SIENA SECO Hermes

 Location
Producer, consumer,

and intermediate
Intermediate Producer and

consumer
Intermediat e

 Definition Constraint language Constraint language Programming
language

Programming
language

 Implementation String String Object Object

 Evaluation

 Mechanism Implicit interpreted Implicit interpreted Implicit compiled Implicit interpreted

 Time Propagation Propagation Propagation Propagation

 Expressive Power

 Type Predefined Predefined Predefined Predefined

 Operator Range Range Range Range

 Combinator Arbitrary Arbitrary Arbitrary Arbitrary

 Mobility Static Static and nomadic
entity

Static Static

 Composite Events Omitted Omitted Omitted Omitted

Non-Functional Event Service Features

 Quality of Service

 Real-time Soft Best effort Best effort Best effort

 Priority Multiple No No No

 Store
Occupancy

Configurable Implicit Implicit Implicit

 Reliability
Best effort, reliable

connection or
persistent

Best effort
Best effort (uSECO)

or reliable connection
(mSECO)

Reliable connection
(temporarily) and then

best effort

 Ordering
Any, FIFO, priority or

deadline Any Any Any

 Security Omitted Omitted Omitted Omitted

 Failure Mode

 Entity Partial system failure Partial system failure Partial system failure Partial system failure

 Middleware
Functional partial

system failure or total
system failure

Geographical partial
system failure or total

system failure
Results in failed entity

Geographical or
functional partial

system failure
(temporarily)

 Network Partial system failure Redundant or partial
system failure

Partial system failure Redundant or partial
system failure

4 CONCLUSION 36

4 Conclusion

This paper presented a taxonomy of distributed event-based programming systems. The
taxonomy identifies a set of fundamental properties of event-based programming systems and
categorises them according to their event model and the structure of their event service. The
event service is further classified according to its organisation and interaction model, as well
as other functional and non-functional features. These properties are then arranged in a
hierarchical manner starting from the root of the taxonomy, which defines the relationships
between an event system, an event service and an event model. Each of these properties is
described in detail and a range of event systems are used as examples.
We have demonstrated how a taxonomy user may apply the taxonomy to existing event
systems by categorising a number of selected event services, which have been chosen to cover
various properties, according to the taxonomy.
Our taxonomy differs from related work in that it identifies an extensive set of generic event
system properties describing various systems dimensions in detail. The taxonomy considers
functional and non-functional properties, including mobility, security, and quality of service,
and describes the possible options for these properties. As a result, it can be used to classify
virtually any distributed event-based programming system regardless of system scale or
application domain whereas existing work focuses on providing a framework designed for a
specific application area or based on a particular high-level model.
Event systems may evolve together with future advancements in the information technology
industry. Such next-generation event systems may support additional, novel properties in
order to accommodate new application requirements that may result from these advances. For
example, a means for consumers to electronically pay producers for the information they
disseminate may arise as an important feature in future event-based systems. Consequently,
the taxonomy may need to be extended to support such novel properties. The hierarchical
structure on which our taxonomy is based may easily cope with such potential enhancements.
Adding novel properties or refining existing properties is straightforward as such changes
affect a specific part of the taxonomy only and do not require a reorganisation of the existing
hierarchy.

Acknowledgments

The work described in this paper was partly supported by the Irish Higher Education
Authority's Programme for Research in Third Level Institutions cycle 0 (1998-2001) and by
the FET programme of the Commission of the European Union under research contract IST-
2000-26031 (CORTEX).

REFERENCES 37

References

[1] R. Meier and V. Cahill, "Taxonomy of Distributed Event-Based Programming Systems," The
Computer Journal, vol. 48, pp. 602-626, 2005.

[2] D. Chambers, G. Lyons, and J. Duggan, "Design of Virtual Store using Distributed Object
Technology," in Proceedings of the 5th International Symposium on Software Engineering for
Parallel and Distributed Systems (PDSE/ICSE 2000). Limerick, Ireland: IEEE Computer Society,
2000, pp. 66-75.

[3] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, and A. Hopper,
"Implementing a Sentient Computing System," IEEE Computer, vol. 34, pp. 50-56, 2001.

[4] H. Muller and C. Randell, "An Event-Driven Sensor Architecture for Low Power Wearables," in
Proceedings of the Workshop on Software Engineering for Wearable and Pervasive Computing
(SEWPC/ICSE2000) . Limerick, Ireland: IEEE Computer Society, 2000, pp. 39-41.

[5] J. Orvalho, L. Figueiredo, and F. Boavida, "Evaluating Light-weight Reliable Multicast Protocol
Extensions to the CORBA Event Service," in Proceedings of the 3rd International Conference on
Enterprise Distributed Object Computing (EDOC'99). Mannheim, Germany: IEEE Publishing,
1999, pp. 255-261.

[6] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul, "Filtering and Scalability in the ECO
Distributed Event Model," in Proceedings of the 5th IEEE International Symposium on Software
Engineering for Parallel and Distributed Systems (ICSE/PDSE 2000) . Limerick, Ireland: IEEE
Computer Society, 2000, pp. 83-95.

[7] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and D. Sturman, "An Efficient
Multicast Protocol for Content-Based Publish-Subscribe Systems," in Proceedings of the 19th
International Conference on Distributed Computing Systems (ICDCS'99). Austin, TX, USA:
Springer-Verlag, 1999, pp. 262-272.

[8] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman, "Exploiting IP
Multicast in Content-Based Publish-Subscribe Systems," in Proceedings of IFIP/ACM
International Conference on Distributed Processing (Middleware 2000) . New York, USA:
Springer-Verlag, 2000, pp. 185-207.

[9] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems, Concepts and Design , Third
ed. Harlow, Essex, England: Pearson Education Limited, 2001.

[10] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri, "Generic
Support for Distributed Applications," IEEE Computer, vol. 33, pp. 68-76, 2000.

[11] R. Meier, "Event-Based Middleware for Collaborative Ad Hoc Applications," Department of
Computer Science, University of Dublin, Trinity College, Ireland, Ph.D. Thesis September 2003.

[12] M. Erzberger and M. Altherr, "Every Dad Needs a Mom - Message-Oriented Middleware,"
SoftWired AG, Zurich, Switzerland, White Paper 1999.

[13] S. Maffeis, "Developing Publish/Subscribe Applications with iBus," SoftWired AG, Zurich,
Switzerland, White Paper 1999.

[14] C. Ma and J. Bacon, "COBEA: A CORBA-Based Event Architecture," in Proceedings of the 4th
USENIX Conference on Object-Oriented Technologies and Systems (COOTS). Santa Fe, New
Mexico, USA: USENIX Association, 1998, pp. 117-131.

[15] A. Hopper, A. Harter, and T. Blackie, "The Active Badge System," in Proceedings of the
Conference on Human Factors in Computing Systems (INTERCHI'93). Amsterdam, The
Netherlands: ACM Press, 1993.

[16] S. J. Kang, S. H. Park, and J. H. Park, "ROOM-BRIDGE: A Vertically Configurable Network
Architecture and Real-Time Middleware for Interoperability between Ubiquitous Consumer
Devices in Home," in Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001) . Heidelberg, Germany: Springer-Verlag, 2001, pp. 232-
251.

[17] T. Harrison, D. Levine, and D. Schmidt, "The Design and Performance of a Real-Time CORBA
Event Service," in Proceedings of the 1997 Conference on Object-Oriented Programming

REFERENCES 38

Systems, Languages and Applications (OOPSLA'97). Atlanta, Georgia, USA: ACM Press, 1997,
pp. 184-200.

[18] J. Bacon, K. Moody, and W. Yao, "Access Control and Trust in the use of Widely Distributed
Services," in Proceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware2001) . Heidelberg, Germany: Springer-Verlag, 2001, pp. 295-310.

[19] K. O'Connell, V. Cahill, A. Condon, S. McGerty, G. Starovic, and B. Tangney, "The VOID Shell:
A Toolkit for The Development of Distributed Video Games and Virtual Worlds," in Proceedings
of the Workshop on Simulation and Interaction in Virtual Environments. University of Iowa,
Iowa City, USA, 1995, pp. 172-177.

[20] R. Meier and V. Cahill, "Taxonomy of Distributed Event-Based Programming Systems," in
Proceedings of the International Workshop on Distributed Event-Based Systems (IEEE
ICDCS/DEBS'02). Vienna, Austria: IEEE Computer Society, 2002, pp. 585-588.

[21] Sun Microsystems Inc., Java AWT: Delegation Event Model: Sun Microsystems Inc., 1997.
[22] Microsoft Corporation, C# Language Specification, Version 0.28: Microsoft Corporation, 2001.
[23] B. E. Martin, C. H. Pedersen, and J. Bedford-Roberts, "An Object-Based Taxonomy for

Distributed Computing Systems," IEEE Computer, vol. 24, pp. 17-27, 1991.
[24] R. Meier and V. Cahill, "Exploiting Proximity in Event-Based Middleware for Collaborative

Mobile Applications," in Proceedings of the 4th IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS'03), LNCS 2893. Paris, France: Springer-Verlag,
2003, pp. 285-296.

[25] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E. Wise, "A Framework for Event-based Software
Integration," ACM Transactions on Software Engineering and Methodology (TOSEM) , vol. 5, pp.
378 - 421, 1996.

[26] D. S. Rosenblum and A. L. Wolf, "A Design Framework for Internet-Scale Event Observation
and Notification," in Proceedings of the The Fifth Symposium on the Foundations of Software
Engineering (FSE5) and The Sixth European Software Engineering Conference (ACM SIGSOFT
ESEC97). Zurich, Switzerland, 1997, pp. 344-360.

[27] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, "The Many Faces of
Publish/Subscribe," ACM Computing Surveys, vol. 35, pp. 114-131, 2003.

[28] Object Management Group, CORBAservices: Common Object Services Specification -
Notification Service Specification, Version 1.0 : Object Management Group, 2000.

[29] Iona Technologies, "Orbix 6.1 Technical Overview," Iona Technologies, Dublin, Ireland, White
Paper December 2003.

[30] D. C. Schmidt, "Real-Time CORBA with TAO (The ACE ORB),"
http://www.cs.wustl.edu/~schmidt/TAO.html, White Paper 2004.

[31] J. Bacon, J. Bates, R. Hayton, and K. Moody, "Using Events to Build Distributed Applications,"
in Proceedings of the Second International Workshop on Services in Distributed and Networked
Environments (SDNE'95). Whistler, British Columbia, Canada: IEEE Computer Society, 1995,
pp. 148-155.

[32] Object Management Group, CORBAservices: Common Object Services Specification - Event
Service Specification : Object Management Group, 1995.

[33] J. Kaiser, C. Brudna, C. Mitidieri, and C. Pereira, "COSMIC: A Middleware for Event-Based
Interaction on CAN," in Proceedings of the 9th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA2003) , vol. 2. Lisbon, Portugal: IEEE Computer
Society, 2003, pp. 669-676.

[34] J. Kaiser, C. Brudna, and C. Mitidieri, "A Real-Time Event Channel Model for the CAN Bus," in
Proceedings of the Eleventh International Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS 2003). Nice, France: IEEE Computer Society, 2003, pp. 120.2.

[35] K. O'Connell, T. Dinneen, S. Collins, B. Tangney, N. Harris, and V. Cahill, "Techniques for
Handling Scale and Distribution in Virtual Worlds," in Proceedings of the Seventh ACM SIGOPS
European Workshop. Connemara, Ireland: ACM Press, 1996, pp. 17-24.

[36] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, "Content Based Routing with
Elvin4," in Proceedings of AUUG2K. Canberra, Australia, 2000.

REFERENCES 39

[37] P. Sutton, R. Arkins, and B. Segall, "Supporting Disconnectedness – Transparent Information
Delivery for Mobile and Invisible Computing," in Proceedings of the IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2001) . Brisbane, Australia: IEEE CS
Press, 2001, pp. 277-285.

[38] A. Padovitz, S. W. Loke, and A. B. Zaslavsky, "Using the Publish-Subscribe Communication
Genre for Mobile Agents," in Proceedings of the First German Conference on Multiagent System
Technologies (MATES'03), LNCS 2831. Erfurt, Germany: Springer-Verlag Heidelberg, Germany,
2003, pp. 180-191.

[39] S. W. Loke, A. Padovitz, and A. B. Zaslavsky:, "Context -Based Addressing: The Concept and an
Implementation for Large-Scale Mobile Agent Systems," in Proceedings of the 4th IFIP
International Conference on Distributed Applications and Intero perable Systems (DAIS'03),
LNCS 2893. Paris, France: Springer-Verlag Heidelberg, Germany, 2003, pp. 274-284.

[40] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra, "Matching Events in a Content-
based Subscription System," in Proceedings of the 18th ACM Symposium on Principles of
Distributed Computing (PODC'99). Atlanta, GA, USA, 1999, pp. 53-61.

[41] S. Bhola, R. E. Strom, S. Bagchi, Y. Zhao, and J. S. Auerbach, "Exactly-once Delivery in a
Content-based Publish-Subscribe System," in Proceedings of the International Conference on
Dependable Systems and Networks (DSN 2002). Bethesda, MD, USA: IEEE Computer Society,
2002, pp. 7-16.

[42] P. R. Pietzuch and J. Bacon, "Hermes: A Distributed Event-Based Middleware Architecture," in
Proceedings of the International Workshop on Distributed Event-Based Systems
(ICDCS/DEBS'02). Vienna, Austria: IEEE Computer Society, 2002, pp. 611-618.

[43] P. R. Pietzuch and J. Bacon, "Peer-to-Peer Overlay Broker Networks in an Event-Based
Middleware," in Proceedings of the 2nd International Workshop on Distributed Event-Based
Systems (ACM SIGMOD/PODS/DEBS'03). San Diego, California, USA: ACM Press, 2003, pp.
1-8.

[44] P. R. Pietzuch, "Hermes: A Scalable Event-Based Middleware," Queens' College, University of
Cambridge, UK, Ph.D. Thesis February 2004.

[45] Sun Microsystems Inc., Java Distributed Event Specification : Sun Microsystems Inc., 1998.
[46] G. Cugola, E. D. Nitto, and A. Fuggetta, "The JEDI Event-Based Infrastructure and its

Application to the Development of the OPSS WFMS," IEEE Transactions on Software
Engineering (TSE) , vol. 27, pp. 827-850, 2001.

[47] I. Podnar, M. Hauswirth, and M. Jazayeri, "Mobile Push: Delivering Content to Mobile Users," in
Proceedings of the International Workshop on Distributed Event-Based Systems
(ICDCS/DEBS'02). Vienna, Austria: IEEE Computer Society, 2002, pp. 563-570.

[48] P. T. Eugster, R. Guerraoui, and C. H. Damm, "On Objects and Events," in Proceedings of the
16th ACM Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2001). Tampa, Florida, USA: ACM Press, 2001, pp. 131-146.

[49] P. Eugster, "Type-Based Publish/Subscribe," Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland, PhD Thesis December 2001.

[50] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann, "Engineering Event-Based Systems with
Scopes," in Proceedings of the 16th European Conference on Object-Oriented Programming
(ECOOP 2002). Málaga, Spain: Springer-Verlag, 2002, pp. 309-333.

[51] L. Fiege, F. C. Gartner, O. Kasten, and A. Zeidler, "Supporting Mobility in Content-Based
Publish/Subscribe Middleware," in Proceedings of the ACM/IFIP/USENIX International
Middleware Conference (Middleware 2003) . Rio de Janeiro, Brazil, 2003, pp. 103-122.

[52] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design and Evaluation of a Wide-Area Event
Notification Service," ACM Transactions on Computer Systems, vol. 19, pp. 283 - 331, 2001.

[53] R. Meier and V. Cahill, "STEAM: Event-Based Middleware for Wireless Ad Hoc Networks," in
Proceedings of the International Workshop on Distributed Event-Based Systems (IEEE
ICDCS/DEBS'02). Vienna, Austria: IEEE Computer Society, 2002, pp. 639-644.

REFERENCES 40

[54] R. Meier and V. Cahill, "Location-Aware Event-Based Middleware: A paradigm for
Collaborative Mobile Applications?," presented at the 8th CaberNet Radicals Workshop, Ajaccio,
Corsica, France, 2003.

[55] R. Meier, B. Hughes, R. Cunningham, and V. Cahill, "Towards Real-Time Middleware for
Applications of Vehicular Ad Hoc Networks," in Proceedings of the 5th IFIP International
Conference on Distributed Applications and Interoperable Systems (DAIS'05), LNCS 3543.
Athens, Greece: Springer-Verlag, 2005, pp. 1-13.

[56] R. Meier, V. Cahill, A. Nedos, and S. Clarke, "Proximity-Based Service Discovery in Mobile Ad
Hoc Networks," in Proceedings of the 5th IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS'05), LNCS 3543. Athens, Greece: Springer-
Verlag, 2005, pp. 115-129.

[57] G. Cugola and H.-A. Jacobsen, "Using Publish/Subscribe Middle ware for Mobile Systems," ACM
SIGMOBILE Mobile Computing and Communications Review (MC2R) , vol. 6, pp. 25-33, 2002.

[58] I. Burcea, H.-A. Jacobsen, E. d. Lara, V. Muthusamy, and M. Petrovic, "Disconnected Operation
in Publish/Subscribe Middleware," in Proceedings of the IEEE International Conference on
Mobile Data Management (MDM 2004) . Berkeley, California, USA: IEEE Computer Society,
2004, pp. 39-50.

[59] Z. Xu and H.-A. Jacobsen, "Efficient Constraint Processing for Location-aware Computing," in
Proceedings of the 6th International Conference on Mobile Data Management (MDM 2005).
Ayia Napa, Cyprus: ACM Press, 2005, pp. 3-12.

[60] I. Sommerville, Software Engineering . Boston, MA, USA: Addison Wesley, 1995.
[61] C. Bettstetter, H.-J. Vögel, and J. Eberspächer, "GSM Phase 2+ General Packet Radio Service

GPRS: Architecture, Protocols, and Air Interface," IEEE Communications Surveys and Tutorials,
vol. 2, pp. 2-14, 1999.

[62] R. Meier, "Communication Paradigms for Mobile Computing," ACM SIGMOBILE Mobile
Computing and Communications Review (MC2R) , vol. 6, pp. 56-58, 2002.

[63] J. Bacon, J. Bates, R. Hayton, and K. Moody, "Using Events to Build Distributed Applications,"
in Proceedings of the Seventh ACM SIGOPS European Workshop. Connemara, Ireland: ACM
Press, 1996, pp. 9-16.

[64] P. R. Pietzuch, B. Shand, and J. Bacon, "A Framework for Event Composition in Distributed
Systems," in Proceedings of the 4th ACM/IFIP/USENIX International Conference on Middleware
(Middleware 2003) . Rio de Janeiro, Brazil: Springer, 2003, pp. 62-82.

[65] P. R. Pietzuch, B. Shand, and J. Bacon, "Composite Event Detection as a Generic Middleware
Extension," IEEE Network Magazine, Special Issue on Middleware Technologies for Future
Communication Networks, pp. 44-55, 2004.

[66] C. Liebig, M. Cilia, and A. Buchmann, "Event Composition in Time-Dependent Distributed
Systems," in Proceedings of the Fourth IECIS International Conference on Cooperative
Information Systems. Edinburgh, Scotland: IEEE Computer Society, 1999, pp. 70-78.

[67] M. Mansouri-Samani and M. Sloman, "GEM: A Generalized Event Monitoring Language for
Distributed Systems," IEE/IOP/BCS Distributed Systems Engineering Journal, vol. 4, pp. 96-108,
1997.

[68] S. Chakravarthy and D. Mishra, "Snoop: An Expressive Event Specification Language For Active
Databases," Data & Knowledge Engineering , vol. 14, pp. 1-26, 1994.

[69] H. Kopetz, Real-Time Systems. Norwell, MA, USA: Kluwer Academic Publishers, 1997.
[70] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System,"

Communications of the ACM, vol. 21, pp. 558-565, 1978.
[71] K. Birman, Building Secure and Reliable Network Applications. Greenwich, CT, USA: Manning

Publishing Co., 1996.
[72] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf, "Security Issues and Requirements for

Internet-scale Publish-Subscribe Systems," in Proceedings of the 35th Hawaii International
Conference on System Sciences (HICSS). Big Island, Hawaii, USA: IEEE Computer Society,
2002, pp. 303.

REFERENCES 41

[73] F. Cristian, "Understanding Fault-Tolerant Distributed Systems," Communications of the ACM,
vol. 34, pp. 56-78, 1991.

[74] F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler, "Extensible Markup
Language (XML) 1.0 (Third Edition)," http://www.w3.org/TR/2004/REC-xml-20040204, W3C
Recommendations February 2004.

