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Abstract 
Event-based middleware is currently being applied for application component integration in a 
range of application domains. As a result, a variety of event services have been proposed to 
address different requirements. In order to aid the understanding of the relationships between 
these systems, this paper presents a taxonomy of distributed event-based programming 
systems. The taxonomy is structured as a hierarchy of the properties of a distributed event 
system and may be used as a framework to describe such a system according to its properties. 
The taxonomy identifies a set of fundamental properties of event systems and categorises 
them according to the event model supported and the structure of the event service. Event 
services are further classified according to their organisation and their interaction models, as 
well as other functional and non-functional features. 
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1 Introduction 

The event-based communication model represents a well-established paradigm for 
asynchronously interconnecting the components that comprise an application in a potentially 
distributed and heterogeneous environment, and has recently become widely used in a range 
of application areas including  large-scale internet services [2] and mobile computing [3, 4]. 
Event-based communication is particularly useful in centralised and distributed applications 
that require one or more application components to react to changes occurring in other 
application components as it provides a one-to-many or many-to-many communication 
pattern [5-8]. The asynchronous nature of event-based communication [9, 10] results in a less 
tightly coupled communication relationship between application components compared to the 
traditional request/response communication model.  
Event-based communication also allows application components to interact anonymously [11] 
without concern for either the number or the location of the components involved. 
Anonymous interaction allows application components to establish communication 
relationships relatively easily, involving modest initialisation effort compared to the 
request/response communication model. It is therefore well suited for accommodating 
communities of cooperating distributed components that establish communication 
relationships dynamically over time in an unpredictable fashion. 
Event-based middleware is currently being applied in many application domains including 
finance, telecommunications, smart environments, multimedia, avionics, health care, and 
entertainment [2, 3, 12-19]. Moreover, with the widespread deployment and use of wireless 
technology, where communication relationships amongst heterogeneous application 
components [9] are established very dynamically during the lifetime of the components, 
event-based middleware will become even more prevalent as it addresses important 
application requirements including avoidance of long-lasting and hence potentially expensive 
connections, hiding of communication latency due to decoupled interaction phases, omission 
of centralised control, and heterogeneity. The notion of dynamically inaugurating 
communication relationships among application components without relying on centralised 
control is central to addressing the needs of a scalable system, representing the ability to 
accommodate growth in a potentially large-scale distributed environment. 
Event-based communication models, or simply event models, are used in applications ranging 
from small-scale, centralised to large-scale, highly distributed systems [20]. On one hand, 
they are exploited to interconnect individual components of applications, for example, the 
components comprising graphical user interfaces [21, 22]. Such graphical components may 
disseminate user-driven and hence sporadic changes to their state to other components of the 
application that are required to react to these changes. At the other extreme, publishers of 
stock trading information may utilise an event service to post the latest trading rates to a 
group of brokers, potentially located in different cities or even countries [12, 13]. In between 
these extremes, smart environments often employ event-based communication models to 
interconnect a large number of application components [16] ranging from light and door 
actuators and sensors to robotic vehicles moving within and between buildings. 
As event-based middleware is used in a large number of applications in a range of domains, a 
variety of event services have been proposed to address different application requirements. 
This paper presents a survey of existing event systems structured as a taxonomy of distributed 
event-based programming systems. Generally, a taxonomy is a classification that allows 
different examples of some generic type to be systematically arranged in groups or 
categorised according to established criteria. The taxonomy presented in this paper is 
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structured as a hierarchy of the properties of a distributed event system and may be used as a 
framework to describe an event system according to its properties. Arranging the properties 
identified by a taxonomy in a hierarchical manner is a common mechanism for presenting and 
describing systems and their features. For example, Martin et al. [23] describe their taxonomy 
for distributed computing systems as a hierarchy of questions and answers about the features 
of such systems. 
The ultimate challenge of establishing a taxonomy is to identify the criteria according to 
which the area of interest is categorised and to arrange them systematically. Our taxonomy 
identifies a set of fundamental properties of event-based programming systems and 
categorises them according to the event model supported and the structure of the event 
service. Event services are further classified according to their organisation and interaction 
model, as well as other functional features, such as event propagation model and event 
filtering, and non-functional features, such as ordering semantics and security. These 
properties are then arranged in a hierarchical manner starting from the root of the taxonomy, 
which defines the relationship between event system, event service, and event model. Each 
property is described providing corresponding terminology. 
As far as possible, categories have been chosen to be independent but nevertheless, there are 
some interdependencies between certain categories. These interdependencies are discussed in 
the relevant sections. 

1.1 Exploiting the Taxonomy 
In addition to providing a means of describing an event system, the taxonomy can be used to 
broadly summarise event systems and the taxonomy terminology provides a common 
vocabulary to be used in the general discussion of event systems. Event systems can then be 
discussed using the same terminology and therefore, can easily be compared with each other 
or can be matched against system requirements. This can lead to the identification of families 
of event systems that support a common feature by identifying the set of systems that support 
a certain set of properties. For example, the properties described in Figure 30 can be used to 
identify the family of event systems that supports mobility. 
The taxonomy may also serve as a basis for identifying the canonical combination of the 
properties of an event system required by a particular application domain, simply by applying 
the taxonomy to a number of existing event systems used in that particular application domain 
and by extracting the common combination of properties. This can be useful for the 
requirements and design engineering of a novel event system. Moreover, the taxonomy is 
expected to be utilised to identify novel combinations of the properties of event systems and 
consequently, may serve as a basis for discovering potential research issues to be addressed in 
future work. This has already led us to develop STEAM [24], a location-aware event-based 
middleware for collaborative mobile applications. 

1.2 Related Work 
Our taxonomy presents a set of generic event system properties and hence can be used to 
classify virtually any distributed event-based programming system regardless of system scale 
or application domain. The taxonomy identifies a large variety of properties, including quality 
of service, mobility, and security, and describes these properties as well as possible 
implementation options in detail. 
Existing work on describing event systems has focussed either on providing a high-level 
reference model or on classifying event systems for a specific application area. Barrett et al. 
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[25] present a framework for event-based software integration that provides a high-level 
model for identifying components commonly found at the heart of event-based software 
integration in large scale systems. This framework identifies the main components of an event 
system as informers, listeners, registrars, routers, message transformer functions, and delivery 
constraints. The framework describes the relationships among these components in detail 
using an object-oriented type model, but does not specify possible patterns of interaction 
between informers and listeners. Moreover, it does not explicitly identify functional event 
system features and omits non-functional features altogether. 
The work of Rosenblum and Wolf [26] on a design framework for event observation and 
notification has focussed on supporting the construction of large-scale, event-based systems 
for the Internet. This framework comprises seven models, namely the object, event, naming, 
observation, time, notification, and resource models, to capture many of the design 
dimensions relevant to Internet-scale applications. Even though each of these models is 
discussed in detail, the overall number of properties according to which an event system may 
be classified is substantially smaller compared to the taxonomy presented in this paper. This 
is due to the fact that this framework imposes certain constraints in order to specifically 
support Internet-scale event observation and notification and because certain issues, such as 
quality of service, mobility, and security, have not been considered.  
Eugster et al. [27] identify the common denominators of variants of the publish/subscribe 
interaction scheme using three dimensions. These dimensions describe the decoupling 
between producers and consumers of information in terms of time, space, and 
synchronisation. This work focuses on implementation issues related to event dissemination, 
the underlying media, and quality of service aspects, and as such does address other 
functional and non functional features, such as mobility support, failure mode, and security 
mechanisms. 

1.3 Interpreting the Taxonomy 
This taxonomy is presented using both figures and corresponding text. The figures outline the 
relationships among the fundamental properties of event systems and define the terminology 
to identify them. The text associated with each figure describes the corresponding properties 
in detail. The figures allow a taxonomy user to easily trace paths through the hierarchy to 
discover relevant properties. As summarised in Figure 1, the figures consist of nodes 
representing properties of interest, one of which is the root node and some of which are 
leaves. Nodes are connected by directed paths. The directed paths are represented by a set of 
arrows describing the nature of the paths leaving a specific node. A set of dashed arrows 
leaving a specific node indicates that exactly one path has to be chosen when tracing through 
that node. Solid arrows indicate that at least one path has to be chosen, whereas double lined 
arrows indicate that all possible paths need to be followed in parallel. In order to apply the 
taxonomy to an event system, a taxonomy user traces paths through the hierarchy starting 
from the root node and selecting the connections that most accurately describe the event 
system until each selected path reaches a leaf. The terms associated with the nodes along a 
path describe a property of the event system. 
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1 
Select all paths 

Select exactly one path 

Select at least one path 

 

Leaf 

Node 

 

Figure 1. Taxonomy legend. 

For example, Figure 21 shows that the features of an event service include both functional 
and non-functional features by using double lined arrows to describe the paths between the 
nodes. Hence, when tracing through the features node, all paths, i.e., both of them, must be 
selected to describe the corresponding properties of the event system. The solid arrows 
connecting the nodes in Figure 22 indicate that one kind of event propagation model can be 
provided by an event service, although some event services may support both the sporadic 
and the periodic event propagation models. Therefore, either one or both paths may be traced. 
Figure 4 shows that an event model can be characterised as either peer-to-peer, mediator, or 
implicit. The dashed arrows connecting the nodes, which imply that exactly one path has to be 
chosen, illustrate this. 
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2 The Taxonomy 

The root of the taxonomy, which is depicted in Figure 2, defines the relationship between an 
event system, an event service and an event model. Every event system has both an event 
service and an event model, which we define as follows: 

 
• An event system is an application that uses an event service to carry out event-based 

communication. 

• An event service is middleware that implements an event model, hence providing event-
based communication to an event system. 

• An event model consists of a set of rules describing a communication model that is based 
on events. 

We differentiate between event service and event model in order to capture the facts that an 
event model defines an application-level view of an event service and that a range of different 
event services may implement a given event model. Event models essentially reflect the 
different uses for which they are intended. For example, the objectives of the Java AWT 
delegation event model [21] differ substantially form those of the CORBA notification service 
model [28] , which leads to major differences in the Application Programming Interfaces 
(APIs) that they provide. The goal of the CORBA notification service model is to be 
extremely general-purpose and usable in virtually any domain. Consequently, it supports a 
wide range of features including typed and untyped event communication, as well as filtering 
and administrative capabilities. Moreover, a variety of quality of service properties, such as 
event reliability, connection reliability, event priority, and event delivery order, are supported 
to control the propagation characteristics of events. This is reflected in a fairly large and 
complex API. In contrast, the Java AWT delegation event model is intended for small-scale, 
centralised applications, such as graphical user interfaces, and therefore omits many of the 
features of the CORBA event model. This results in its API being much simpler than that of 
the CORBA event model. 

 
Event System 

Event Service Event Model 
 

Figure 2. The root of the taxonomy. 

The CORBA event model also serves as an example of an event model that was specified 
with the expectation of being implemented by a range of event services, and potentially being 
exploited in different application domains. The Object Management Group (OMG) leaves 
open the implementation of their model and therefore, leaves it to different vendors to provide 
implementations. Consequently, event services supporting the CORBA event model have 
been implemented and extended by a number of commercial and academic organisations [29], 
[5], [30]. 
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Figure 3. Event system overview. 

The relationships between event system, event service and event model are summarised from 
the event system’s perspective in Figure 3. Apart from depicting how an event system uses an 
event service that implements a particular event model, Figure 3 also outlines how event 
system and service map onto a transport mechanism and how applications use entities as 
hooks into the event service. Entities are the components of an application that produce and 
consume events, excluding components of the event service. An entity may play the role of a 
producer and/or a consumer of events. 
There is no generally accepted standard terminology used for the application components that 
act as consumers or producers of events. As a result, the event systems presented in this paper 
use a variety of alternative terminology, which is summarised in Table 1, when referring to 
event producers and consumers. We use the systems outlined in Table 1 later in this paper to 
illustrate the properties identified by our taxonomy. 

Table 1. Event system terminology. 

Event System Producer Consumer 

CEA [10, 31] Source object Client object 

CONCHA [5] Multicast supplier Multicast consumer 

CORBA [28, 32] Supplier Consumer 

COSMIC [33, 34] Publisher Subscriber 

ECO [6, 35] Object Object 

Elvin [36, 37] Producer Consumer 

Elvin Agents [38, 39] Producer Consumer 

Gryphon [7, 40, 41] Publisher Subscriber 

Hermes [42-44] Publisher Subscriber 

Java AWT [21] Source Listener 

Java Distributed [45] Generator Listener 

JEDI [46] Active object Active object 

Mobile Push [47] Publisher Subscriber 

Obvents [48, 49] Publisher Subscriber 

Rebeca [50, 51] Producer Consumer 

SECO, uSECO, mSECO [6] Object Object 

SIENA [52] Object of interest Interested party 
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Event System Producer Consumer 

STEAM [24, 53-56] Producer Consumer 

TAO RT CORBA [17, 30] Supplier Consumer 

ToPSS [57-59] Publisher Subscriber 

2.1 Event Model 
The event model defines the manner in which an event service is made visible to the 
application programmer. It specifies the components of an event service to which the 
application programmer is explicitly exposed and that are used to subscribe to events and to 
propagate them. In particular, the event model classifies the means by which consumers 
subscribe to the events in which they are interested and the means by which an application 
raises and delivers events, as well as the number and location of the components used. As 
shown in Figure 4, we have identified three distinct categories of event model, which are 
peer-to-peer, mediator, and implicit. 

 
Event Model 

Implicit Mediator Peer-to-Peer 

Multiple Single 

Non-Functionally 
Equivalent 

Functionally 
Equivalent 

 

Figure 4. Event model categories. 

2.1.1 Peer to Peer 
A peer to peer event model allows consumers to subscribe at specific named producers 
directly and producers to deliver events to specific named consumers directly. The Java 
distributed event model is based on a peer-to-peer event model allowing a 
RemoteEventListener to subscribe to events by invoking a register method on an 
explicitly named EventGenerator. 
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TheConsumerApplication {//the RemoteEventListener 
  //subscribe to an explicit producer 
  AnExplicitEventGeneratorRef = retrieveEventGeneratorRef(); 
  AnExplicitEventGeneratorRef.register(this); 
 
  //delivery handler implementation 
  notify(TheRemoteEventInstance) { 
    processAnEvent(TheRemoteEventInstance); 
  } 
} 
 
 
TheProducerApplication {//the EventGenerator 
  //register method implementation 
  register(RemoteEventListenerRef) { 
    SubscribedRemoteEventListenerRef = RemoteEventListenerRef; 
  } 
 
  //raise an event 
  AnEventInstance = new Event(someParameters); 
  SubscribedRemoteEventListenerRef.notify(AnEventInstance); 
} 

Figure 5. A producer and a consumer application using the peer-to-peer Java distributed event 
model. 

The simplified application shown in Figure 5 outlines a subscribing 
RemoteEventListener and an EventGenerator invoking the notify method on a 
subscribed RemoteEventListener using a RemoteEventListener reference to 
deliver a specific event instance. 

2.1.2 Mediator 
Event models utilising a mediator allow consuming entities to subscribe at a designated 
mediator and producing entities to deliver events to the mediator, which then forwards them 
to the subscribed entities. 
The mediator sub-hierarchy explores the number and functionality of mediators in the event 
model. We differentiate between models utilising a single  mediator and models exploiting 
multiple  mediators. The CORBA event model2 may use a single mediator (known as an event 
channel) for propagating all events from producers to consumers. Multiple mediators are 
further divided into functionally equivalent and non-functionally equivalent mediators. In the 
former, all mediators are functionally equivalent. Thus, entities may subscribe or deliver 
events to any one of them. Such a mediator is called an event server in the SIENA model. 
SIENA may use a set of different event server topologies of which all but the centralised 
topology exploit multiple, functionally equivalent event servers. When mediators are not 
functionally equivalent, entities have to subscribe or deliver events to the correct mediator. 
For example, an application exploiting the CORBA event model3 may use multiple event 
channels each propagating a different type of event. 
The simplified application shown in Figure 6 outlines how both CORBA consumers and 
producers connect to the explicitly-named event channel through which they intend to 
                                                 
2 The CORBA specification allows its event model to use a single or multiple mediators. For the 
purpose of this example, we refer to a CORBA event model utilising a single mediator. 
3 The CORBA specification allows its event model to use a single or multiple mediators. For the 
purpose of this example, we refer to a CORBA event model utilising multiple mediators. 
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exchange events. Connected producers may raise events by pushing them to the event 
channel, which forwards them to all subscribed consumers by invoking their delivery handlers 
in turn. 

TheConsumerApplication { 
  //connect to an explicit event channel 
  ConsumerAdmin = TheEventChannel.forConsumers(); 
  ProxyPushSupplier = ConsumerAdmin.obtainPushSupplier(); 
  ProxyPushSupplier.connectPushConsumer(TheConsumer); 
} 
 
TheConsumer { 
  //delivery handler implementation 
  push(TheRemoteEventInstance) { 
    processAnEvent(TheRemoteEventInstance); 
  } 
} 
 
 
TheProducerApplication { 
  //connect to an explicit event channel 
  SupplierAdmin = TheEventChannel.forSuppliers(); 
  ProxyPushConsumer = SupplierAdmin.obtainPushConsumer(); 
  ProxyPushConsumer.connectPushSupplier(TheSupplier); 
} 
 
TheSupplier { 
  //raise an event 
  AnEventInstance = new Event(someParameters); 
  ProxyPushConsumer.push(AnEventInstance); 
} 

Figure 6. A producer and a consumer application using the mediator-based CORBA event 
model. 

2.1.3 Implicit 
An implicit event model allows consuming entities subscribe to particular event types rather 
than at another entity or a mediator. Producers generate events of some type, which are then 
delivered to the subscribed consumers. The direct approach for CEA source objects to 
disseminate events to client objects, described by Bacon et al. [31], is based on an implicit 
event model. Figure 7 shows a simplified version of an active badge application using direct 
CEA. The consumer subscribes by invoking a register method provided by a local library 
passing the event type of interest as well as a reference to its delivery handler. The producer 
declares its event type and subsequently raises events of this type by invoking a signal method 
provided by a local library. The event service delivers events to all registered consumers by 
calling their delivery handlers. 
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TheConsumerApplication { 
  //subscribe to an event type 
  template = Badge_Seen(17, 29); 
  EventClient.Register(EventHandler, template); 
 
  //delivery handler implementation 
  EventHandler(TheRemoteEventInstance) { 
    processAnEvent(TheRemoteEventInstance); 
  } 
} 
 
 
TheProducerApplication { 
  //specify the event type 
  Badge : INTERFACE = Seen : EVENTCLASS [badge : BadgeId; sensor : SensorId]; 
  END. 
 
  //raise an event 
  e = Badge_Seen(17, 29); 
  EventSource.Signal(e); 
} 

Figure 7. A producer and a consumer application using the implicit Direct CEA. 

2.1.4 Discussion 
An event system exploiting either a peer-to-peer or a mediator-based event model allows its 
entities to interact by invoking remote methods directly on each other or on one or more 
mediators respectively whereas entities of an event system with an implicit event model 
interact by subscribing and delivering events locally using event types. 
Significantly, these approaches differ in the way the identifiers of the components exposed to 
the application programmer are obtained and maintained. Peer-to-peer and mediator-based 
event models require the application programmer to obtain the identifiers of specific 
producers or mediators respectively, usually by means of a naming service, and to maintain 
them. Every consumer of an event system utilising a peer-to-peer event model is required to 
obtain the identifier of each producer in which it is interested, i.e., the application programmer 
must ensure a consumer subscribes to the correct set of producers, and to maintain the correct 
set of subscriptions during its lifetime. Similarly, entities of an event system using a mediator-
based event model need to acquire the identifiers of the mediators involved, i.e., the 
application programmer must track the identifiers to the mediators to which a specific entity 
needs to connect. However, mediator-based event models are likely to obtain and maintain a 
smaller number of different identifiers compared to peer-to-peer models. There are likely to 
be significantly fewer mediators in an event system than producers and their number is 
unlikely to change over time 4, certainly compared to the number of producers as they may be 
created frequently to provide services for a limited period of time. In contrast, the application 
programmer in an event system with an implicit event model is not required to acquire the 
identifiers of producers or mediators at all. The application programmer does not need to 
explicitly identify the producers with which a consumer needs to communicate as consumers 
subscribe to producers transparently using event types. This requires a more sophisticated 
event service as it is responsible for locating peers, maintaining the corresponding identifiers, 

                                                 
4 An event system may exploit a single mediator whose reference characteristically remains unchanged, 
assuming the absence of failure, during the lifetime of the system. 
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mapping event types to identifiers, and for providing a means to define and check the type of 
events. 
Most significantly, the event model exploited by an event system affects one of the main 
concepts of event-based communications, namely the degree of anonymity among the entities 
in the system. The means by which consumers subscribe to the events in which they are 
interested and by which events are propagated and delivered influences the degree of 
anonymity among them. The peer-to-peer approach permits specific named entities to interact 
directly with each other. Consequently, entities are not anonymous to each other. Mediator-
based event models, where entities register with one or more mediators, provide a degree of 
anonymity where entities are anonymous to each other but known to the mediator(s). The 
implicit approach allows entities to interact anonymously. Such entities are anonymous to 
each other and are only known by the event service that implements the mapping of event 
types to entities. Nevertheless, entities may choose to identify themselves at the application 
level regardless of the degree of anonymity provided by the underlying event model. This 
may be useful for example, in applications that wish to assess the level of trust between 
producers and consumers. 

2.2 Event Service 
This section deals with the classification of the properties of event service middleware. As 
Figure 9 shows, we divide the properties of an event service into three distinct categories. The 
organisation sub tree focuses on the distribution of the producers and consumers as well as the 
components of the middleware and on the fashion in which the components that comprise an 
event service cooperate. The interaction model defines the communication path over which 
event producers and consumers communicate with each other. The feature sub hierarchy 
addresses the other (functional and non-functional) features provided by an event service. 

 

Centralised 

Separated 
Middleware 

Collocated 
Middleware 

Multiple Single 

Separated 
Middleware 

Multiple Single 

Collocated 
Middleware 

Distributed 

Organisation 

 

Figure 8. Event service organisation. 
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Figure 9. The event service. 

2.2.1 Organisation 

As summarised in Figure 8, the organisation sub tree classifies an event service as either 
centralised or distributed according to the location of the event system’s entities. These two 
sub categories are further divided exploring the location of the event service’s components. 
The entities of an event system are centralised if they reside in the same address space on the 
same physical machine. In contrast, if the entities of an event system are distributed they 
may be located in different address spaces possibly on different physical machines. 
Whether the entities of an event system are centralised or distributed, the middleware can be 
either collocated or separated. 
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Figure 10. Centralised event service with collocated middleware. 

Collocated Middleware. The event service is collocated with the entities if it resides only in 
the same address space(s) on the same physical machine(s). As illustrated in Figure 10, the 
organisation of a centralised event service with collocated middleware results in both the 
entities and the middleware being located exclusively in the same address space. No part of 
the event system resides outside the implicit single address space. This organisation may be 
used for small-scale applications consisting of a relatively small number of entities, such as 
graphical user interfaces. For example, the Java AWT delegation event model is implemented 
by the Java Virtual Machine (JVM) to connect the graphical components of an application 
sharing their address space with the middleware. Another event service that may be used in a 
similar fashion is provided by the C# programming language [22]. In contrast, the 
organisation of a distributed event service with collocated middleware results in the 
middleware being distributed with the entities, each entity using the part of the middleware 
that is local to it. Figure 11 shows the organisation of a distributed event service with 
collocated middleware, which may include an arbitrary number of address spaces. 
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Figure 11. Distributed event service with collocated middleware. 

This organisation has been adopted by mSECO, an event service implementing the ECO 
event model. mSECO is implemented as a library that is collocated with each entity. Notably, 
mSECO is exclusively located in the same address spaces as the entities. Moreover, the 
address spaces in which the entit ies reside may or may not be located on different physical 
machines. Likewise, STEAM adopts this organisation in order to avoid dependence on a 
service infrastructure other than the machines hosting producers and consumers. This enables 
STEAM to support the wireless, ad hoc networks for which it has been designed. 
Separated Middleware. In this case, the event service is at least partially located in one or 
more separate address spaces possibly on different physical machines. We divide separated 
middleware into two categories depending on the partitioning of the middleware. Figure 12 
depicts an event service with separated single  middleware, whose entities are centralised and 
whose middleware is located in a separate address space. This organisation uses exactly two 
separate address spaces, one including the entities and the other containing the middleware. 
The two address spaces may reside on the same or on two different physical machines. 
Figure 13 illustrates a distributed event service with separated single middleware, whose 
entities are distributed and whose middleware is located on a single machine. This 
organisation may involve a large number of address spaces and possibly physical machines, 
depending on the location of the entities and the middleware. However, all the address spaces 
may reside on a single physical machine. A CORBA event service providing a single event 
channel5 serves as an example of such an organisation. Its entities typically reside in different 
address spaces distributed over multiple physical machines using an event channel located on 
another machine. However, the address space in which the event channel resides may be 
located on the same physical machine as some of the entities’ address spaces. 

                                                 
5 The CORBA event service may utilise one or more event channels. For the purpose of this example, 
we refer to a CORBA event service utilising a single event channel. 
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Figure 12. Centralised event service with 
separated single middleware. 
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Figure 13. Distributed event service with separated 
single middleware. 

Figure 14 and Figure 15 show event services with separated multiple middleware, whose 
middleware is distributed over a set of cooperating address spaces possibly on different 
physical machines, for a centralised and a distributed organisation respectively. 
Figure 15 also illustrates that some of the middleware’s address spaces may be located on the 
same machines as some of the entities. This also applies for centralised entities with separated 
multiple middleware. We admit the possibility of an organisation supporting centralised 
entities with separated multiple middleware although we cannot provide an example for such 
an organisation. SIENA, which uses an organisation as shown in Figure 15, proposes a set of 
middleware topologies, called server topologies, of which all but the centralised topology use 
middleware that is distributed over a set of cooperating machines. 
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Figure 14. Centralised event service with 
separated multiple middleware. 
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Figure 15. Distributed event service with 
separated multiple middleware. 

Discussion. The organisation adopted by an event service has a major impact on issues 
related to the scalability of the system, its behaviour in the presence of failed components, and 
on the mechanism for communication between entities and the middleware. Conventionally, 
approaches containing centralised middleware components are more likely to experience 
performance bottlenecks with increasing scale and tend to suffer more in the presence of 
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failures than distributed approaches. The use of middleware located in multiple address 
spaces allows the distribution of the communication load reducing the risk of performance 
bottlenecks. Instead of having middleware located in a single address space handling all the 
communication between the entities in an event system, middleware distributed over multiple 
address spaces may divide the load. Exploiting middleware distributed over multiple address 
spaces also avoids potential single points of failure in the system. For example, if the 
middleware in the organisations illustrated in Figure 10, Figure 12 and Figure 13 fails none of 
the entities in the corresponding systems will be able to communicate. In contrast, a 
middleware component failing in one of the organisations depicted in Figure 11, Figure 14, or 
Figure 15 has a less devastating effect on an event system allowing the entities to 
communicate even in the presence of failure. Significantly, this depends on the middleware 
being located in multiple address spaces and not on the distribution of the entities in a system. 
The organisation of an event service also affects the mechanism through which entities 
communicate with the middleware. Approaches where entities and middleware reside in 
different address spaces distributed over different physical machines require a mechanism that 
supports cross-network communication. A much simpler inter-process communication 
mechanism may be sufficient for organisations where entities and middleware reside in 
different address spaces on the same physical machine. Entities and middleware sharing an 
address space may communicate using a programming-language-specific mechanism, such as 
procedure call or method invocation. 
This taxonomy may serve as a basis for identifying the combinations of event system 
properties that are well suited as well as the combinations that are less suited or even 
incompatible. For instance, mediator-based event models map well onto event service 
organisations with separated middleware. Separated middleware residing in an independent 
address space may naturally implement a mediator to which producers and consumers may 
connect. Peer-to-peer and implicit event models are well suited for organisations with 
collocated middleware. These organisations allow entities to directly connect to each other 
using interfaces specified by the collocated middleware, which provides a means for mapping 
events and their types to entities. In addition, the centralised organisation with collocated 
middleware may map onto mediator-based event models as the collocated middleware may 
implement a mediator. In contrast, combinations based on separated middleware and peer-to-
peer event models, are less suitable as peer-to-peer models imply that entities interact directly. 

2.2.2 Interaction Model 
The interaction sub tree classifies an event service according to the interaction model used 
by the event system. Generally, the interaction model defines the communication path over 
which event communication between event producers and consumers takes place. It defines 
the number of intermediate middleware components involved and the manner in which 
intermediates cooperate to route events from the producers to consumers. Compared to the 
organisation model, which focuses on the distribution of the entities and the middleware of an 
event system, i.e., providing a static view of an event service, the interaction model describes 
the information flow in an event system. Hence, it describes the dynamic aspect of an event 
service. 
As Figure 16 depicts, we divide the interaction model into two main categories, namely 
intermediate and no intermediate, exploring whether and how many intermediate middleware 
components an event passes through. 
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Figure 16. Event service interaction model. 

No Intermediate. The communication path over which event communication between 
producers and consumers takes place does not include separated intermediate middleware 
components. Producers and consumers communicate with each other through the middleware 
collocated with each entity. As Figure 17 illustrates, events that are routed from producers to 
consumers pass through the collocated middleware, but not through any intermediate 
middleware component. 
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Figure 17. No intermediate. 

 

Transport Mechanism 

Application 

Event Service 

C 

Application 

Event Service 

P 

Event Service Event Service 

 

Figure 18. Distributed intermediate. 

We sub divide this model into three categories according to the means by which entities 
address each other. These interaction models are called the point-to-point, named, and 
implicit models. 
Producer and consumer entities may communicate directly with each other in a point-to-
point fashion, using explicit entity addresses, which are provided by the application. The 
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middleware uses explicit entity addresses and a unicast communication pattern when routing 
events from producing to consuming entities. The Java distributed event model allows 
producers to route events to the subscribed consumers using the explicit consumer addresses 
provided by the application. 
Producer and consumer entities may communicate directly with each other using a name 
service to map event descriptions, such as event types, to entity addresses provided by the 
application. The middleware uses either a unicast or a multicast communication pattern to 
route events from a producer to the interested consumers. uSECO uses a name service, called 
the Application Instance Repository (AIR), to resolve the addresses of the entities that are 
interested in a specific event type and a unicast communication pattern to route events. 
Producers and consumers may communicate directly with each other using an implicit means 
to map event descriptions to entity addresses provided by the application. The middleware 
uses a multicast communication pattern when routing events from producers to consumers. 
mSECO, a multicast version of the uSECO event service, does not rely on an AIR since it 
uses an implicit means, based on generating addresses from event descriptions, to map events 
to the multicast addresses representing the interested consumers. 
Intermediate. The communication path over which event communication between producers 
and consumers takes place includes at least one separated intermediate middleware 
component. Thus, events that are routed from producers to consumers pass through one or 
more intermediate middleware components. 
The intermediate interaction model is divided into two sub categories according to the number 
of intermediate middleware components in the communication path. In the centralised 
intermediate  model, the communication path includes a single intermediate middleware 
component. In contrast, the distributed intermediate model involves two or more 
intermediates through which events are routed. Figure 18 depicts the distributed intermediate 
interaction model with a communication path that includes two distributed intermediates. 
Both centralised and distributed intermediates can be divided further. We classify centralised 
intermediates according to their number as an event service may exploit one or multiple 
centralised intermediates. 
All communication paths between producing and consuming entities may include the same 
single  centralised intermediate. An event system using this interaction model includes exactly 
one centralised intermediate. In contrast, an event system may exploit multiple  centralised 
intermediates. In this case, producers and consumers are divided into groups and all 
communication paths between the producers and consumers within each group include a 
centralised intermediate that is specific to that group. This results in an event system that uses 
several centralised intermediates, the number of which corresponds to the number of groups. 
Multiple centralised intermediates may be used to support groups of entities that share a 
common interest. The common interest of an individual group may be expressed by a specific 
type of event that is handled exclusively by a particular centralised intermediate. For example, 
the CORBA event service may utilise multiple centralised intermediates implemented as 
event channels. Each channel may handle a specific type of event exclusively. Producers and 
consumers intending to communicate using a specific event type connect to the corresponding 
event channel, therefore defining the communication path over which event communication 
takes place. Alternatively, the CORBA event service may use a single centralised 
intermediate implemented as a single event channel through which all events are routed. 
Figure 19 and Figure 20 illustrate the single centralised intermediate and multiple centralised 
intermediate interaction models respectively. Figure 20 shows two groups of entities, each 
comprising of a producer and a consumer using a single centralised intermediate through 



2  THE TAXONOMY  18 
 

 

which events are routed. The communication path associated with one group is outlined with 
solid arrows and the communication path associated with the other is depicted using dashed 
arrows. 
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Figure 19. Single centralised intermediate. 
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Figure 20. Multiple centralised intermediate. 

We classify distributed intermediates as partitioned or cooperative according to the fashion in 
which intermediates cooperate to route events from event producers to consumers. 
Generally, the distributed intermediate interaction model includes two or more intermediate 
middleware components in the communication path between consumers and producers. An 
event service implementing the partitioned distributed intermediate  interaction model 
consists of a number of independent groups of intermediates, each group handling only a 
specific type of event. Entities sharing a common interest need to connect to the group that 
handles the type of event that corresponds to their common interest. For example, the 
CORBA event model specification proposes to chain different implementations of event 
channels, acting as a group of partitioned distributed intermediates, in order to combine non-
functional features supported by individual event channels. 
In contrast, cooperative distributed intermediates do not form independent groups, all 
intermediates cooperate to route events from consumers to producers. Entities connect to the 
most convenient, e.g., physically closest, intermediate. Each intermediate manages the events 
for the entities that are physically connected to it and cooperates with other intermediates to 
route them to remote entities. Cooperative distributed intermediates cooperate with each other 
either in a hierarchical or in a non-hierarchical manner. 
JEDI proposes a hierarchical structure of cooperative distributed intermediates, called 
dispatching servers. Dispatching servers are interconnected in a tree topology through which 
events are routed. Entities may connect to any dispatching server, each of which forwards the 
events it receives from the producers connected to it to its parent and to its descendants to 
route them to all interested consumers. SIENA describes four different topologies of 
cooperative distributed intermediates. One of them serves as an additional example  of 
hierarchical cooperative distributed intermediates, another two, namely the acyclic and the so-
called peer-to-peer topologies, illustrate non-hierarchical cooperative distributed 
intermediates. 
Burcea et al. [58] use a tree-based topology of cooperative distributed intermediates in a 
simulation of a network of ToPSS event brokers servicing an urban area. Producers may be 
co-hosted with and consumers may connect to any of these intermediate brokers. Brokers 
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route events from producers to subscribers and are capable of storing state for deferred 
transfer to temporarily unavailable subscribers. 
Gryphon assumes a network of non-hierarchical brokers to which producers and consumers 
can connect at their convenience. Gryphon organises these brokers into a logical tree 
structure, called the spanning tree, that allows for efficient matching of events to subscribers, 
i.e., to efficiently determine the set of consumers interested in a specific event. Hermes 
introduces the notion of an overlay routing network for organising a network of nodes into a 
non-hierarchical application-level network of event brokers. Producers and consumers 
connect to the broker network and individual brokers subsequently route events through the 
overlay network. 
Discussion. Mediator-based event models map naturally onto interaction models that include 
intermediate middleware components. For example, interaction models using either multiple 
centralised or partitioned distributed intermediates may implement event models that include 
multiple non-functionally equivalent mediators. These event models expose mediating 
application components to the application, which must ensure entities subscribe to the correct 
intermediate middleware component. Cooperative distributed intermediates may implement 
multiple functionally equivalent mediators whereas a single centralised intermediate may 
implement an event model based on a single mediator. Both the named and the implicit 
interaction model are appropriate for implicit event models, since neither of them relies on 
intermediates and because implicit event models do not prohibit the use of middleware 
components providing naming services. The peer-to-peer event model exposes entities 
explicitly to the application. It is therefore best implemented by a point-to-point based 
interaction model using these entity addresses to route events from producers to consumers. 
There are numerous possible combinations of interaction and organisation models as many 
organisations are appropriate for different interaction models. For example, both centralised 
and distributed organisations with separated middleware are suitable for interaction models 
whose communication paths between producers and consumers involve intermediate 
middleware components. Distributed organisations with collocated middleware may be 
combined with interaction models that do not rely on intermediates. Centralised organisations 
with collocated middleware may possibly be combined with every interaction model. 
Although centralised collocated organisations may be best suited for the single intermediate 
interaction model as its middleware component maps naturally onto a single intermediate, it is 
also appropriate for the implicit interaction model with its middleware component 
implementing a means to map event types to entity addresses. 

2.2.3 Features 
The features  supported by an event service can be classified as either functional or non-
functional as shown in Figure 21. 
These functional and non-functional features address requirements regarding the functional 
and non-functional behaviour of a system. Functional requirements are statements of services 
a system should provide, how a system should react to particular inputs and how a system 
should behave in particular situations. In some cases, the functional requirements may also 
explicitly state what a system should not do [60, p.118]. Non-functional requirements are 
constraints on the services or functions offered by a system. They include timing constraints, 
constraints in the development process, standards to be adopted and so on [60, p.119]. 
Based on these definitions, we classify the functions made available by an event service as 
functional features and consider constraints on (or properties of other) system attributes as 
non-functional features. For example, we classify mobility support as a functional feature 
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because it describes services to enable  event-based communication for mobile entities but 
threat security as a non-functional feature since it describes techniques that address how 
event-based communication is secured. 
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Figure 21. Event service features. 

2.2.3.1 Functional Features 
Event Propagation Model. Events are delivered by an event service according to an event 
propagation model. Figure 22 depicts the event propagation model sub hierarchy and shows 
how the event propagation model is divided into two categories describing sporadic and 
periodic event propagation. Sporadic event propagation models propagate events only if the 
relevant state of the producer has changed. Periodic  event propagation models propagate 
events periodically, even if no state change has occurred since the last event. 
Both sporadic and periodic event propagation can be based either on the push or the pull 
model. The sporadic push model is considered the traditional event propagation model and is 
therefore most likely to be supported by an event service. However, an event service may 
support several of the propagation models shown in Figure 22. 
Event propagation based on the sporadic push model is producer-driven and producers 
propagate events as they are generated. The sporadic push model is supported by many event 
models including the Java AWT delegation event model, CORBA-based event models, 
Mobile Push, Obvents, ToPSS, and STEAM. 
Event propagation based on the sporadic pull model is also known as event polling. Event 
propagation is consumer-driven as consumers poll producers for available events. Event 
producers propagate events in response to requests from consumers. Among others, this 
propagation model is supported by the CORBA notification service, by Obvents, and by 
ToPSS. 
Event propagation based on the periodic push model is well suited for “heartbeat” or 
“watchdog” mechanisms as well as for disseminating events according to a predefined 
schedule. Event propagation is producer-driven and producers propagate events periodically. 
Both the COSMIC and TAO RT CORBA event services use the periodic push propagation 
model as a means to statically schedule event propagation while reserving the required 
resources for events that have hard real-time delivery deadlines. 
Event propagation based on the periodic pull model represents traditional polling. Event 
propagation is consumer-driven as consumers poll producers periodically. Producers 
propagate events in response to requests from consumers. 
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Periodic event propagation models imply that events with identical content may be 
propagated as the state of the producer may not have changed since the previous event was 
propagated. We argue that periodic events still conform to our definition of events when 
considering the passage of time as a change to a producer’s state even though periodic events 
may not contain an explicit description of time. 
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Figure 22. Event propagation model. 

Event Type. Events propagated by an event service can be classified according to their 
structure and hence are said to be of a specific event type. As outlined in Figure 23, we 
differentiate between generic and typed events. 
The information that constitutes a generic event, which is also known as an un-typed event, is 
a data blob with an implicit structure. The structure is neither recognised nor interpreted by 
the event service. The CORBA event service is one of the few event services that supports 
propagation of generic events. 
In contrast, the information that describes typed events includes an explicit and expressive 
structure that may be recognised and interpreted by the event service. Typed events enable 
the use of event filters. 
Event types are represented by a structure with varying expressive power. The expressive 
power of an event type describes the variety of information that they can be included in an 
event of that type. The expressive power of the structures outlined in Figure 23 increases from 
left to right. 
The structure that represents an event type is either fixed or application-specific. The former 
is predefined by the event service whereas the latter may be defined by the application. 
Both fixed and application-specific structures can be sub divided. Fixed structures consist 
either of a name, a name and some numeric parameters, or a name and some string 
parameters. A name  usually consists of a single string. The name and string parameters 
structure therefore consists of a set of strings. The first string representing the event name and 
the remaining strings representing the event parameters. JEDI uses an event structure 
consisting of a name and a set of string parameters. The name and numeric parameters 
structure consists of a single string and a set of numbers: the string representing the event 
name and the numbers representing the event parameters. The version of CEA described by 
Bacon et al. [31] supports typed events that consist of a structure consisting of a name and a 
set of number parameters. Application-specific structures consist of either attributes or an 
object. The attributes structure consists of a set of attributes in which each attribute is a triple 
of name, type, and value. The CORBA notification service supports a general event structure 
consisting of attributes. The object structure consists of a programming-language-specific 
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object including a set of attributes. One of the key properties of both ECO and Obvents is 
their support of events in the form of specific application defined objects. 
Event types may be organised into type hierarchies. Such event type hierarchies are similar 
to class hierarchies in object-oriented programming languages like Java or C++ in that event 
types can be derived from each other. Specialised event types can be derived from more 
general event types using inheritance. Event filters that match events of a certain general type 
will also match events of sub-types derived from that general type. Hermes is an event service 
that centres around the notion of event types and supports event type hierarchies. 
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Figure 23. Event type. 
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Figure 24. Event filter. 
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Figure 25. Event filter location. 
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Event Filter. Event filters control the propagation of events by allowing consumers to 
subscribe to the exact subset of the events in which they are interested. Events are matched 
against filters and are only delivered if the match produced a positive result. Figure 24 shows 
the properties according to which we classify event filters. 
Event filters must be evaluated at a particular location. If supported, event filters may be 
evaluated at the consumer side, the producer side or at the intermediate. Furthermore, a set of 
event filters may be evaluated sequentially at more than one location, thus they may be 
applied at any combination of consumer, producer, and intermediate. Figure 25 summarises 
all possible combinations of event filter locations. 
Filters are not supported and events are consequently propagated to all subscribers. The 
CORBA event service is an example of an event service that does not support event filters. 
Filters are evaluated at the producer side. This minimises the use of network bandwidth and 
consumer processing overhead as events are filtered as close to the producer as possible. 
SECO serves as an example of an event service that supports producer-side filtering. 
Filters are evaluated at the consumer side. This allows an implementation of a precise 
matching algorithm as the required set of events is typically well-known at the consumer side. 
The Java distributed event model allows filters to be applied at the remote event listener. 
Filters are evaluated at the intermediate . This is a natural location for service-wide filters (as 
well as quality of service properties) since all events are propagated through the intermediate. 
Filters are evaluated at the producer and the consumer side. ECO supports filters in the 
form of pre- and post constraints, which may be applied at the producer and the consumer 
side respectively. 
Filters are evaluated at the producer side and at the intermediate  thereby combining the 
characteristics of producer-side and intermediate filter evaluation. 
Filters are evaluated at the consumer side and at the intermediate . In addition to allowing 
filtering at the remote event listener, the Java distributed event model supports optional event 
adapters at which filters may be applied as well. 
Filters are evaluated at the producer and the consumer side, as well as at the intermediate. 
The CORBA notification service supports filtering in a hierarchical manner that allows filters 
to be evaluated at the producer and the consumer side, as well as at intermediates. 
As shown in Figure 26, event filters can be defined by the application by using a constraint 
language  that is specified as part of the event service or by using the features of an 
application programming language . The CORBA notification service specifies a constraint 
language that allows applications to use constraint expressions to define event filters. When 
using a programming language to define event filters, applications may use a subset of the 
types, operators, and combinators supported by the programming language or may be 
permitted to use all types, operators, and combinators supported by the language. SIENA 
limits applications to using a specific subset of the types, operators, and combinators available 
whereas SECO allows them to use all available types, operators, and combinators. 
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Figure 26. Event filter definition. 

Figure 27 summarises possible implementations  techniques for event filters. An event filter 
can be implemented using either a character string, a function, or an object. Character strings 
can provide a textual representation of filter expressions that are typically parsed by the event 
service applying them. Filters that are implemented as functions  are applied by executing 
these functions. Object filters must be instantiated before they can be applied by invoking a 
method of the object. Both the CORBA notification service and SIENA implement event 
filters as strings that are parsed at run time whereas SECO filters are implemented as objects 
providing an evaluate() operation. 
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Figure 27. Event filter implementation. 

Event filters are evaluated by the event service to determine the list of interested subscribers. 
As shown in Figure 28, event filters are evaluated at a particular time  using a specific 
mechanism to match events against filters. 
The evaluation mechanism is divided into two sub categories depending on whether filter 
specifications are interpreted or compiled. The former are characteristically evaluated using 
an event model specific interpretation mechanism while the latter can be evaluated using 
operations provided by the programming language. Both interpretable and executable filters 
are either generated by a pre-processor or are implicitly provided by the application. The 
CORBA notification service specifies a constraint language that allows applications to 
implicitly provide filter expressions that are interpreted by the evaluation mechanism. 
STEAM on the other hand, allows applications to implicitly define and then to compile their 
filters. 
Event filters are evaluated either at subscription time or at event propagation time. 
Evaluating filters at subscription time may be useful when matching parameters describing 
the current context of the subscriber that are only relevant at that point in time or when 
matching pre-constraint filters. Such pre-constraint filters may assess the availability of 
resources, authenticate a connection, or process admission control. However, event services, 
including the CORBA notification service, SIENA, STEAM, Elvin, and COSMIC, 
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traditionally evaluate event filters at event propagation time when the actual list of interested 
subscribers can be determined. 
Figure 29 summaries issues related to the expressive power of event filters. Event filters may 
be defined using an expressive structure that is described using a set of types, operators, and 
combinators. 
The structure enclosed in an event filter may contain a set of types with varying expressive 
power. These sets are either implicit or predefined by the event service and their expressive 
power generally increases with the number of types they comprise. While both implicit and 
predefined sets can contain one or more types, predefined sets are typically larger and hence 
more expressive than implicit sets. 
JEDI and CEA [31] are examples of event models supporting implicit types. Both of them 
support string types while CEA provides a second implicit type, namely number. In contrast, 
event models such as SIENA and STEAM provide predefined sets comprising a larger 
number of types. 
An event filter may contain a set of operators  with varying expressive power. From left to 
right, the sets outlined in Figure 29 are supersets of each other and hence increase in their 
expressive power. The filter may support equality and inequality operators, less than and 
greater than magnitude  operators that may be combined with equality operators, or 
magnitude operators that can be combined to form range  operators. JEDI and CEA only 
support equality operators whereas SIENA and STEAM support equality, magnitude, and 
range operators. 
An event filter may employ a set of combinators  with varying expressive power that may be 
used to combine terms including types and operators. The expressive power of the set of 
combinators outlined in Figure 29 increases from left to right. The structure may not contain 
any combinator or may contain either a single implicit combinator or an arbitrary number of 
combinators. CEA supports an implicit conjunctive combinator that requires all terms defined 
by a specific filter to match individually for the filter to return a positive result while SIENA 
and STEAM provide a range of arbitrarily applicable combinators. STEAM filters are defined 
as a collection of either conjunctive or disjunctive terms. These filter terms are matched 
against the relevant parameters of an event either in a conjunctive or a disjunctive manner, 
thus defining whether all or at least one of the terms that comprise a filter must be true for the 
filter to match. 



2  THE TAXONOMY  26 
 

 

 

Mechanism 

Compiled 

Implicit Pre-processed 

Interpreted 

Implicit  Pre-processed 

Time 

Propagation Subscription 

Evaluation 

 

Figure 28. Event filter evaluation. 
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Figure 29. Event filter expressive power. 

Mobility. Another functional event service property, which is becoming increasingly 
important with the emergence of wireless communication, is support for entity mobility. 
Figure 30 summaries the degree of mobility that may be provided by an event service. 
Many event services do not support mobility; all entities in such an event system are assumed 
to have a static location. However, an event system may contain entities that may move 
location from one host machine to another thereby assuming the address of the current host 
machine. The mobile code  category refers to event services that support entities that can 
move from one computer to another and subsequently execute at their destination. JEDI 
supports this feature through its concept of reactive objects. Loke et al. [38, 39] propose an 
extension to Elvin that enables mobile code, referred to as mobile agents, to migrate from one 
host to another in order to perform computations on behalf of mobile multi-agent applications. 
The mobile device category refers to event services that support portable computing devices, 
such as notebook computers and handheld devices, which may move location while keeping 
their addresses, thereby moving the entities they host. Mobile devices may host nomadic and 
collaborative entities and may be capable of wireless networking. Nomadic entities interact 
through either a fixed network infrastructure or a mobile computing environment to which 
they connect via nodes acting as access gateways. Characteristically, they may suffer periods 
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of disconnection while moving between points of connectivity. For example, SIENA’s 
mobility support service allows nomadic entities to connect to proxy components using 
wireless connections based on General Packet Radio Services (GPRS) [61] technology. These 
proxy components run on event servers that act as access points and transparently manage 
(and synchronise) subscriptions and events on behalf of a moving entity. Mobile Push and 
ToPSS propose a similar approach to supporting nomadic application components in which 
entities disconnect from the event service infrastructure while moving. ToPSS supports 
application scenarios in which nomadic entities disconnect for substantial periods of time as 
well as those where disconnection periods are very short. The former scenario reflects the 
behaviour of subscribers accessing the event service at distinct locations with considerable 
commuting times from one area of connectivity to another whereas the latter characterises 
subscribers employing handover mechanisms when roaming between overlapping 
connectivity areas. 
Nomadic entities may access the event service infrastructure either through fixed or wireless 
connections. In contrast, collaborative entities use a wireless network to interact with other 
mobile entities that have come together at some common location. Collaborative entities may 
use ad hoc networks to support communication without the need for a separate infrastructure, 
thus allowing loosely-coupled entities to communicate and collaborate in a spontaneous 
manner. STEAM exploits geographical scopes, called proximities [62], in order to 
accommodate collaborative entities. It allows entities residing in the same proximity to 
dynamically establish wireless ad hoc connections to one another and subsequently to deliver 
events at the location of the proximity. 
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Figure 30. Mobility support. 

Composite Events. Subscribers may require an event service to recognise the occurrence of a 
specific pattern of two or more particular events possibly propagated by different producers. 
Services inform subscribers of such a combination of event occurrences by means of a 
notification called a composite event. Subscribers express their interest in composite events 
by defining what can be termed composite event filters, which specify the sequences of event 
occurrences of interest, typically using an application-level language. 
Composite event filters can be applied analogously to ordinary event filters. However, the 
location at which composite event filters may be evaluated depends on the locations of the set 
of producers potentially propagating relevant events. Composite event filters must be 
evaluated at a location included on the propagation paths of all events of interest. For 
example, composite event filters for recognising event patterns composed of events 
propagated by several distributed producers generally cannot be evaluated at the producer 
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side. Such composite event filters must be evaluated at an intermediate, at the consumer side, 
or at a combination of consumer and intermediate. Furthermore, when intermediates are 
distributed, composite event filters must be evaluated at an intermediate located on all event 
propagation paths. 
As depicted in Figure 31, an event service may omit composite events. However, when 
supported, the occurrence of composite events causes the service to notify subscribers 
accordingly. Subscribers may specify the number of the events involved, their logical 
relationship, and the time  window in which the events involved must occur. Exactly two or 
three or more  events may be defined in a pattern that describes their sequence of occurrence 
along with a time window that may be defined implicitly by the event service or explicitly by 
the subscriber application. This window defines the time interval during which a certain 
number of events must occur in a given pattern for composite events to be detected. 
As part of their work on CEA, Bacon et al. [63] have defined an application-level language 
for specifying sequences of event occurrences of interest. Monitors then use a combination of 
event filters to detect composite events that conform to these sequences. Pietzuch et al. [64, 
65] propose a general composite event detection framework that is similar to the CEA 
approach in that it also introduces a high-level specification language for event occurrences of 
interest. However, this framework has been designed independently of specific event system 
and as such, can accompany a range of existing event-based middleware architectures. The 
language for composite event specification can be used to express patterns including sequence 
(event1 followed by event2), alteration (event1 or event2), and parallelisation (event1 and 
event2). The interval timestamp model [66] has been adopted for handling the clock 
uncertainties that are intrinsic to distributed systems. 
Other specification languages for the detection of composite events have been proposed by 
Mansouri-Samani and Sloman [67] as well as by Chakravarthy and Mishra [68]. GEM [67] is 
a generalised event monitoring language that is based on rules. It proposes a tree-based 
approach for composite event detection and supports temporal constraints. Snoop [68] is an 
expressive event specification language designed to accommodate the requirements of a wide 
range of applications. It is event-model independent and focuses on supporting powerful 
temporal constraints. 
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Figure 31. Composite events. 
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Figure 32. Quality of service. 

2.2.3.2 Non-functional Features 

Quality of Service. The QoS of an event service may be configured according to the 
requirements of a particular application. Figure 32 shows that we divide the QoS supported by 
an event service into four categories describing the behaviour of an event service when 
propagating and delivering events. 
The real-time  category explores the guarantees provided by an event service regarding the 
timely delivery of events. Real-time guarantees can be either best-effort, soft or hard. In the 
best-effort case, no deadlines can be associated with events. An event service supporting soft 
real-time  provides guarantees with a probability that is sufficient to be used for soft real-time 
deadlines and a hard real-time  service provides guarantees with a probability that is 
sufficiently high to be used for hard real-time deadlines. Hard real-time guarantees must meet 
their temporal specification in all anticipated load and fault scenarios [69]. The CORBA 
notification service allows deadlines defining earliest and latest delivery time to be assigned 
to events that are enforced with a probability that is sufficient to be used for soft real-time 
deadlines. Generally, hard real-time guarantees are difficult to provide as they require a 
predictable communication pattern, usually only available in a small-scale environment. This 
is particularly true for distributed event systems. Distributed event systems are traditionally 
based on anonymous one-to-many communication patterns that tend to be unpredictable and 
are likely used in systems consisting of a large number of loosely-coupled entities. However, 
the TAO RT event service, an extension to the CORBA event service that was developed for 
avionics applications, supports hard real-time guarantees. COSMIC uses event channels as an 
abstraction for network resources and allows applications to assign timeliness properties to 
channels. It supports best-effort guarantees in the form of non real-time event channels as 
well as soft and hard real-time guarantees through soft real-time channels and hard real-time 
channels respectively. 
In order to influence the sequence in which events are delivered, a priority may be assigned 
to an individual event. Usually, no priority can be assigned and therefore all events have 
identical priority. An event service that supports alarm events allows a single priority to be 
assigned to certain events. The CORBA notification service provides multiple  priorities. 
Store  occupancy describes the maximum size of memory required by an event service to 
operate at any point during its lifetime. This size can be either implicit or it may be 
configurable  according to the requirements of a particular application. Implicit store 
occupancy either imposes a fixed maximum memory size or allocates the required memory 
dynamically whereas configurable store occupancy typically depends on a number of 
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parameters. These parameters may describe the maximum size of the queues that buffer 
events as well as the maximum number of producers, consumers, and mediators that may be 
supported by an event service. 
The reliability category investigates the guarantees provided by an event service regarding 
the delivery of events in the presence of failure. An event service is said to provide best-
effort reliability if no specific delivery guarantees are made. Events may or may not be 
delivered to subscribers in the presence of failure. An event service that supports reliable 
connections  guarantees events being delivered to all correctly functioning subscribers. Upon 
restart from a failure, connections between producers and subscribers are re-established 
without re-subscription and event delivery resumes. A persistent event service guarantees 
events being delivered to all subscribers. Upon restart from a failure, connections between 
producers and subscribers are re-established without re-subscription and persistently buffered 
events are retransmitted. The CORBA notification service may support any of these three 
delivery policies. 
Ordering. An event service delivers events according to a certain ordering semantic. Figure 
33 shows that an event service may deliver events in a certain order in a subset of the system 
or system wide , i.e., throughout the system. Event services with a system wide ordering 
strategy employ exactly one delivery order whereas event systems with subset orders 
associate different ordering strategies with various parts of the system. 
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Figure 33. Ordering. 

Events may be delivered in any order. Such unordered events may be received by any 
subscriber in any order. FIFO order refers to a strategy where two events that are raised by 
the same producer are delivered by consumers with matching subscriptions in the order in 
which they were raised. Causally-ordered events are delivered in the order they were 
published as determined by the well-known happens-before relationship [70]  while totally-
ordered events are delivered in the same order by all subscribers but not necessarily in the 
order they were raised [71]. Mechanisms for providing unordered and FIFO order semantics 
are generally relatively straightforward since they do not require distributed coordination. In 
contrast, enforcing causal and total order semantics requires cooperation between all 
producers and consumers involved. 
Alternatively, events may be delivered according to an associated priority or deadline . These 
semantics imply that the delivery of some event can be pre-empted in order to deliver an 
event that has a higher priority or to deliver an event that has a deadline that is close to 
expiring. Ordering in real-time systems may also be determined by deadlines. 
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The CORBA notification service supports various semantics for defining event delivery order 
for a specific event channel, including any, FIFO, priority, and deadline order. This approach 
allows applications with a single event channel to define a system wide order and applications 
comprising multiple channels to associate a specific order with each channel. CONCHA and 
TAO RT are other CORBA-based event services that support delivery order semantics. 
CONCHA features totally-ordered event delivery and TAO RT CORBA provides a 
dispatching mechanism for priority-based event delivery. 
Security. As discussed below, event services can support a number of mechanisms to 
alleviate the security concerns that may arise in applications that disseminate events among a 
population of distributed producers and consumers. However, the event model that is 
exploited for such applications can have an impact on security concerns as some models are 
more secure than others. Peer to peer models, in which explicitly named entities interact 
directly, can be considered more secure than mediator-based models where interaction 
requires a trusted mediator (or group of mediators) or indeed implicit models where the 
middleware as a whole must be trusted. 
Event services may omit mechanisms that address security concerns or may support security 
properties by providing techniques for event message confidentiality and for authentication.  
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Figure 34. Security. 

Event messages that contain sensitive content may be transmitted over a network in an 
encrypted and therefore confidential form rather than as plain text. This enables producers and 
consumers to keep event messages secret from third parties. For example, Elvin supports a 
security framework that exploits the Secure Socket Layer (SSL) protocol for managing the 
security of its message transmissions over the Internet. 
Essentially, authentication establishes the identity of specific events and serves as the basis 
for a mechanism that polices access to certain operations. Such an access control mechanism 
may regulate access privileges for event dissemination, forwarding, and delivery. Access may 
be granted to an individual event or to a set of events . Such a set of events may be defined 
by various means. Access may be granted to events of a specific type, to the events 
disseminated by a specific producer or a group of producers, to the events described by a 
subscription or by the subscriptions issued by a certain consumer, or to the events handled by 
a particular mediator. For example, Elvin’s security framework enables servers to authorise 



2  THE TAXONOMY  32 
 

 

access to events using keys, which may be associated with either a connection to a specific 
entity or an individual event. 
Wang et al. [72] outline security issues in event services without attempting to present an 
actual security model. Their work specially focuses on Internet-scale event systems and 
discusses security paradoxes, such as anonymity vs. authentication, that arise due to the nature 
of event systems. 
Failure Mode. The failure mode describes the behaviour of an event service in the presence 
of a single component failing silently. A fail-silent component is a self-checking component 
that either functions correctly or stops functioning after an internal failure is detected [73]. As 
outlined in Figure 35, the failure mode category explores support for the failed component 
being an entity, a middleware component, or a part of the network. 
A failed entity may be either a consumer or a producer. A failed consumer does not cause 
the remainder of the system to suffer. A failed producer causes a partial or a total system 
failure. A partial system failure  affects the communication related to some event types that 
may result in fewer events being propagated. No event communication can take place in case 
of a total system failure . A system consisting of a single producer and a number of 
consumers fails totally if the sole producer fails silently. 
A middleware  component failing silently causes a partial or a total system failure similar to 
the effect of a failed producer. A partial system failure  affects either a geographical or a 
functional part of the system. The former disconnects a part of the system from the rest of the 
system. Event communication may take place within the partitions, but no event 
communication takes place between the partitions. A geographical partial system failure may 
be caused by a failing SIENA event server that is part of a hierarchical or an acyclic non-
hierarchical server topology. The latter stops communication related to a particular event type 
throughout the system. However, communication related to other event types does not suffer. 
A functional partial system failure may be caused by a failed event channel in a CORBA 
event service utilising multiple channels, each managing a specific event type. A failing 
centralised JEDI event dispatcher causes a total system failure. 
A part of the network failing silently may be redundant or may cause partial or total system 
failure. A redundant part of the network failing in SIENA utilising a general non-hierarchical 
server topology may not cause the remainder of the system to suffer. Similarly, Hermes’ 
overlay routing layer enables a system to overcome failures in redundant parts of the network 
by using an adaptive routing strategy. 
A partial system failure  disconnects a part of the system from the rest of the system. Event 
communication may take place within the partitions, but no event communication takes place 
between the partitions. SIENA utilising an acyclic non-hierarchical server topology and 
Rebeca, which assumes an acyclic non-hierarchical network topology, behave in this manner. 
A system in which all producers are connected through a single network is susceptible to total 
system failure  where no event communication can take place. 
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Figure 35. Failure mode. 
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3 Classification of Event Systems 

Table 2 illustrates how a taxonomy user may apply the taxonomy to existing event systems. It 
presents a number of selected event services that have been summarised using the 
terminology of the taxonomy presented in this paper. These event services have been selected 
to cover various properties and because sufficiently detailed documentation is available to 
describe them. The CORBA notification service has been chosen due to its widespread use 
and due to its support of a wide range of non-functional features. SIENA, SECO, and Hermes, 
which have been designed in academia, have been chosen because of their organisational and 
interaction models as well as their exploitation (or lack) of event server topologies. 
Table 2 demonstrates that using a common vocabulary for describing event services facilitates 
comparison of service properties. For example, Table 2 shows that both, the CORBA 
notification service and SIENA are based on an event model that includes either a single 
event server or a topology of multiple event servers and that the SECO event model excludes 
the use of such mediators altogether. It also shows that Hermes’ fault tolerance mechanisms 
alleviate the effects of failed middleware components once its overlay routing layer has 
adapted. The implementation of Hermes’ client-side programming model is application-
specific since Hermes defines the set of Extensible Markup Language (XML) [74] messages to 
be exchanged across brokers and clients but not the bindings between client programming 
language and these XML messages. The programming model properties shown are based 
upon the Java version of a client implementation proposed in [44]. Moreover, Pietzuch [44] 
proposes a set of higher-level middleware services for composite event detection, security, 
and congestion control that can be built on top of Hermes. However, these services are not 
intrinsic to Hermes and as a result, were not considered in Table 2. 

Table 2. Categorisation of event systems. 

 CORBA 
Notification Service  SIENA SECO Hermes 

Event Model 

Single mediator or 
multiple, non-
funct ionally 

equivalent mediators 

Single or multiple 
mediators 

Implicit  Multiple mediators 

Event Service 
Organisation 

Single or multiple 
distributed, separated 

middleware 

Single or multiple 
distributed, separated 

middleware 

Distributed, 
collocated middleware 

Multiple distributed, 
separated middleware 

Event Service 
Interaction Model 

Centralised 
intermediate or 

partitioned, 
distributed 

intermediate 

Centralised 
intermediate or 

cooperative, 
distributed 

intermediate 

No Intermediate, 
named (uSECO) or 
implicit (mSECO) 

Cooperative, 
distributed 

intermediate 

Functional Event Service Features  

 Event Propagation 
 Model 

Sporadic push and 
pull 

Sporadic push Sporadic push Sporadic push 

 Event Type  Typed Typed Typed Typed 

  Expressive  
  Power 

Application specific 
attributes 

Application specific 
attributes 

Application specific 
object  

Application specific 
object  

  Type 
  Hierarchies 

Omitted Omitted Omitted Supported 

 Event Filter 
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 CORBA 
Notification Service  SIENA SECO Hermes 

  Location 
Producer, consumer, 

and intermediate 
Intermediate Producer and 

consumer 
Intermediat e 

  Definition Constraint language Constraint language Programming 
language 

Programming 
language 

  Implementation String String Object  Object  

  Evaluation  

   Mechanism Implicit interpreted Implicit interpreted Implicit compiled Implicit interpreted 

   Time Propagation Propagation Propagation Propagation 

  Expressive Power 

   Type Predefined Predefined Predefined Predefined 

   Operator Range Range Range Range 

   Combinator Arbitrary Arbitrary Arbitrary Arbitrary 

 Mobility Static Static and nomadic 
entity 

Static Static 

 Composite Events Omitted Omitted Omitted Omitted 

Non-Functional Event Service Features 

 Quality of Service  

  Real-time Soft Best effort  Best effort  Best effort  

  Priority Multiple No No No 

  Store 
Occupancy 

Configurable Implicit  Implicit  Implicit  

  Reliability 
Best effort, reliable 

connection or 
persistent 

Best effort  
Best effort (uSECO) 

or reliable connection 
(mSECO) 

Reliable connection 
(temporarily) and then 

best effort  

 Ordering 
Any, FIFO, priority or 

deadline Any Any Any 

 Security Omitted Omitted Omitted Omitted 

 Failure Mode  

  Entity Partial system failure Partial system failure Partial system failure Partial system failure 

  Middleware  
Functional partial 

system failure or total 
system failure 

Geographical partial 
system failure or total 

system failure 
Results in failed entity 

Geographical or 
functional partial 

system failure 
(temporarily) 

  Network  Partial system failure Redundant or partial 
system failure 

Partial system failure Redundant or partial 
system failure 

 
 



4  CONCLUSION   36 
 

 

4 Conclusion 

This paper presented a taxonomy of distributed event-based programming systems. The 
taxonomy identifies a set of fundamental properties of event-based programming systems and 
categorises them according to their event model and the structure of their event service. The 
event service is further classified according to its organisation and interaction model, as well 
as other functional and non-functional features. These properties are then arranged in a 
hierarchical manner starting from the root of  the taxonomy, which defines the relationships 
between an event system, an event service and an event model. Each of these properties is 
described in detail and a range of event systems are used as examples. 
We have demonstrated how a taxonomy user may apply the taxonomy to existing event 
systems by categorising a number of selected event services, which have been chosen to cover 
various properties, according to the taxonomy.  
Our taxonomy differs from related work in that it identifies an extensive set of generic event 
system properties describing various systems dimensions in detail. The taxonomy considers 
functional and non-functional properties, including mobility, security, and quality of service, 
and describes the possible options for these properties. As a result, it can be used to classify 
virtually any distributed event-based programming system regardless of system scale or 
application domain whereas existing work focuses on providing a framework designed for a 
specific application area or based on a particular high-level model. 
Event systems may evolve together with future advancements in the information technology 
industry. Such next-generation event systems may support additional, novel properties in 
order to accommodate new application requirements that may result from these advances. For 
example, a means for consumers to electronically pay producers for the information they 
disseminate may arise as an important feature in future event-based systems. Consequently, 
the taxonomy may need to be extended to support such novel properties. The hierarchical 
structure on which our taxonomy is based may easily cope with such potential enhancements. 
Adding novel properties or refining existing properties is straightforward as such changes 
affect a specific part of the taxonomy only and do not require a reorganisation of the existing 
hierarchy. 
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