
The Scientific Report for Exchange Visit to
the ASAP Research Group at INRIA, Rennes

Shen Lin
Lancaster University

s.lin@comp.lancs.ac.uk

1 Aim of the visit

This document is a scientific report about my visit to the As Scalable As Possible (ASAP)
Research Group at INRIA, Rennes (June 9 - July 2, 2008). The visit was funded by the
European Science Foundation (ESF) MiNEMA Scientific Programme, Grant No. 1954.
The purpose of the visit was to exchange the knowledge between the ASAP research
group and the middleware research group at Lancaster University, in order to identify
potential mutual collaborations.

The remainder of this report is organised as follows. Section 2 will introduce gossip-based
protocols and the requirements of middleware support of this protocol family. Section 3
will briefly summarise the related research activities that Lancaster University and INRIA
have been carrying on, respectively. Section 4 will present the main activities carried out
during my visit at INRIA, and finally, Section 5 will illustrate our plans for the future
collaboration.

2 Background

A large number of gossip protocols have been developed in the last few years to address
a wide range of functionalities. A gossip-based protocol prescribes individual nodes to
periodically exchange data with some randomly selected neighbours, causing information
to eventually spread through the system in a “rumour-like” fashion. To deliver scalable
communication in large-scale systems, gossip-based algorithms typically limit the number
of contacted neighbours to a certain number M (known as the fan-out factor) and bound
the size of the data exchanged at each time interval T (termed gossip round, for periodic
gossip protocols). In a network with full connectivity, past research has shown that gossip
protocols allow information to spread through the entire system in logM N ∗T time units
for a network of size N. Furthermore, thanks to the randomised and periodic exchange
of information, gossip-based algorithms offer self-healing capacities and robustness to
transient node failures and network partitions. Because of these benefits, gossip-based
protocols have been applied to a wide range of contexts such as peer sampling, ad-hoc
routing, reliable multicast, database replication, failure detection, and data aggregation.

However, most existing gossip protocols have been developed independently, resulting in
a low degree of reutilisation. and a general lack of reusable software functionalities that
support the development of gossip-based applications (e.g. protocols and middleware).

1

Figure 1: GossipKit’s Common Interaction Model

3 Research works at Lancaster and INRIA

3.1 The GossipKit middleware framework at Lancaster Univer-
sity

My PhD work at Lancaster University focuses on delivering solutions to the problem that
Section 2 describes. As the result of my research work, GossipKit [1, 2], a component-
based middleware framework has been developed to support the operation of multiple
gossip protocol instances and their interactions.

GossipKit’s underlying design concept is based on our identification of a common in-
teraction model (Fig. 1) that many gossip protocols follow. More precisely, we have
observed that most gossip protocols can be decomposed into the components and inter-
actions shown in Fig. 1 [2].

We have implemented a prototype of GossipKit on top of the Java version of OpenCom
[3], a lightweight, efficient and reflective component framework that has been developed
at Lancaster University. We have also used GossipKit to implement a range of gossip-
based protocols such as the membership service protocols SCAMP and the peer sample
service protocol, the ad-hoc routing protocols GOSSIP1 and GOSSIP2, the probabilistic
broadcast protocol pbcast, the overlay topological management protocol T-MAN, and the
garbage collection protocol GSGC. The source code of these protocols and of GossipKit
is available on GossipKit’s home page 1.

Based on the implementation of these protocols and the detailed case studies in our
previous work [2], we have observed that GossipKit promotes code reuse, simplifies con-
figuration for deploying gossip protocol middleware, supports concurrent execution of
multiple protocol instances, and minimises the resource usage at runtime to a certain
level.

Despite these successes, we have noticed two disadvantages of the framework’s XML-based

1www.lancs.ac.uk/postgrad/lins6/sub/GossipKitWeb/GossipKit.html

2

configuration description. First, this description is difficult for users to understand since
they need to analyse component compositions in the XML files to understand protocol
behaviours. Second, for the same reason, it is more difficult and error-prone for users to
write protocol descriptions in terms of component compositions. This shortage leads to
the domain specific langauge (DSL) that I proposed to ESF MiNEMA for the exchange
programme.

3.2 Gossip protocol development and gossip library at INRIA

The ASAP research group at INRIA, Rennes is particularly expertise in designing and
evaluating gossip-based systems. The research group, which is under the direction of
Dr. Anne-Marie Kermarrec, aims to provide scalable mechanisms such as gossip-based
algorithms to deal with scalability and performance issues encountered in large-scaled
networks. To name a few of their significant contributions:

In order to better understand the a various gossip protocols and draw a commonality
from these protocols, one of the ASAP group member, Dr. Davide Frey, is responsible to
systematically maintain the gossip library. This gossip library maintains individual gossip
protocols as distinct components (i.e. coarser-granularity compared with GossipKit) with
standard interfaces to operate on a gossip-based peer sampling service protocol.

4 The work carried out during the visit

4.1 Presentation and initial discussions

To identify potential research areas to collaborate, I gave a presentation on the first
week of my visit at Rennes. On the presentation, I briefly introduced the research works
at the middleware research group at Lancaster, my published work on the GossipKit
middleware framework, my research interests, and my proposal on developing a domain
specific language (DSL) for the abstraction and configuration of gossip protocols. Based
on the presentation, I had a meeting with Dr. Kermarrec and Dr. Marin Bertier, as
well as several informal discussions with many other members at ASAP group. These
discussions resulted to the motivation and the design of the domain specific language
below.

4.2 Design of the domain specific language for gossip program-
ming

As discussed in Section 3.1, traditional component compositions for describing local node
behaviours, which has been widely adopted for configuring component frameworks, can
become more and more difficult for users to write and understand, as the number of the
component (interface) types increases. Visual modeling tools such as EASYCOM and
Genie can reduce the time to write component compositions, however, the complexity of
the configuration (i.e. the effort for users to understand and specific component configu-
rations) still remain.

3

Instead of modeling protocol abstractions locally, macro-programming such as Kairos
has been developed to allow programmers to express, in a centralized fashion, the desired
global behavior of a distributed computation on sensor networks. The underlying con-
cept of such programming is related to shared-memory based parallel programming mod-
els implemented over message passing infrastructures using a small set of programming
primitives. Therefore, it hides programmers from details of distributed-code generation
and instantiation, remote data access and management, and inter-node program flow co-
ordination.

Inspired by macro-programming in sensor networks, we consider to apply such program-
ming to describe the abstraction and configuration of gossip-based protocols. There
are two reasons for doing so: first, similar to programming in sensor networks, the ab-
stractions of gossip-based protocols can be viewed as how data flows and how data are
processed over the networks; and second, macro-programming helps to hide implementa-
tion details, so that gossip-based programmers can focuses on the protocol design.

To develop a macro-programming style DSL to express the abstractions of gossip-based
protocols, we first designed the following list of programming primitives that expressive
enough to describe the abstractions of various gossip-based algorithms.

• Type Node.

• Primitive types int, float, and boolean. Arithmetic and logic operation on these
types.

• Generic type List<T>, and functions getNext() to iterate through the list.

• Built-in variables: ALL NODES is used to express all the available nodes in a
network, and SIZE indicates the SIZE of a list.

• State declaration: ”State [data type list] [size] stateVar;”. This defines that struc-
ture of the state that every node in the network should maintain.

• Built-in function getOneHopNeighbours() can be used to get physical neighbours
for gossip-based algorithms that run on wireless networks.

• Call to GossipKit’s components:
”nodeVar.ComponentName(specify the target states)[component parameterisation];”.
Because the DSL is designed to configure GossipKit’s component compositions. It
is inevitable to explicitly refer to certain components in the component framework.
We have minimised the number of component types that need to be explicitly re-
ferred in the programme to two: PeerSelection and StateProcess. Other component
types can be implicitly implied.

• The if-else statements.

• The ”atomic” block, which indicates that the distributed statements needs to be
executed as an atomic operation. This is useful if some gossip-based protocols
require each node to perform exactly one pairwise state exchange and process at a
gossip round.

4

Figure 2: Use Gossip DSL to describe a gossip-based ordered slicing protocol

To verify the expressiveness of this language, we have applied it to describe eight gossip
protocols that differ by their communication styles, underlying network types, and state
processes. Fig. 2 illustrates how the macro-programming Gossip DSL can be used to
describe a gossip-based ordered slicing protocol [4].

The remainder of this subsection describes the programming process to convert the DSL
to per-node runtime deployment.

The architecture of the program execution is depicted in Fig. 3. Using this DSL, an
abstractions of an individual gossip protocol can be described as a macro-program, which
can then be parsed by a parser that compiler generation tools such as Javacc can gener-
ate. When parsing the gossip protocol abstractions, the embedded interpreter converts
the macro-programmed gossip protocol abstractions to local per-node component config-
uration files. The implementation of the interpreter is independent of the parser, so that
various interpreters may be applied to convert the gossip protocol abstractions to config-
urations of different frameworks such as GossipKit and INRIA’s gossip library. Finally,
the configuration file can be distributed to nodes so that GossipKit can (re)configure on
each node based on this configuration specification.

4.3 Pilot Implementation

To study the feasibility of developing such a programming language for configuring the
GossipKit framework, I have carried out an early implementation on the parser of the
language on the second and the third week during my stay at INRIA. The programming
tool I adopted is Javacc because of my familiarity. The implementation of the parser has
been completed when I was at INRIA. The resulted tool can successfully parse programs
that describe the above mentioned eight case studies, and report syntactic errors on any
malformed programs.

4.4 Second Discussion

On the third week of my visit, I had a meeting with Dr. Kermarrec and Dr. Marin Bertier
to present my design and implementation progress on the domain specific language de-
velopment. We have also decided on the evaluation approaches. The main evaluation
criteria we considered were: simplicity, expressiveness, efficiency, and correctness of the

5

Figure 3: Gossip Domain Specific Programming Architecture

language. Simplicity will be analysed based on the comparison against existing configu-
ration approaches; Expressiveness will be analysed using representative case studies; and
finally efficiency and correctness will be ensured by comparing the performance of gossip
protocols using the gossip DSL programming against the performance of gossip protocols
developed from scratch.

4.5 Others

During my stay at INRIA, I had opportunity to exchange ideas with other researchers
working at the ASAP group in different sub-areas of gossip programming. In particular,
One of Dr. Kermarrec’s PhD student and I have identified a common research interest
in exploiting the synergies between coexisting gossip protocols. We plan to look into this
research area in the future, in order to identify a way to systematically identify potential
synergies and exploit them dynamically.

5 Future collaboration

Our future collaboration will be based on the two research topics (see Section 4) that we
have identified during my visit at INRIA. As the next step, I will continue developing
the language interpreter, which aims to convert the DSL to the localised component
configuration for GossipKit. Together with this domain specific language, GossipKit will
then be provided to members at ASAP group to use, and their feedbacks will be collected
as an important evaluation criteria on GossipKit’s DSL. Meanwhile, to demonstrate the
generality of the DSL, Dr. Davide Frey will work on the implementation of a separate
language interpreter, which can convert the same DSL to the configuration of INRIA’s
gossip library. We have planed to submit a conference paper to ICDCS’09 based on
this work. We will also look for possible collaborations on exploiting synergies between
coexisting gossip protocols.

Travel costs

The following table summarises the travel costs that are related to the exchange pro-
gramme. The images of the receipts, tickets, and boarding passes are attached at the end

6

of this report.

Item Date Cost
Return Air Tickets, Manchester - Rennes 09.06.2008 169.78 pounds

02.07.2008
Taxi, Lancaster - Manchester Airport 09.06.2008 70.5 pounds
(No train connection in the early mornings)
Train Ticket, Manchester Airport - Lancaster 02.07.2008 10.25 pounds
Bus ticket, Rennes Airport - INRIA 09.06.2008 1.2 Euro
Bus ticket, INRIA - Rennes Airport 02.07.2008 1.2 Euro
Bus ticket, Lancs Rail Station - Lancaster Univ. 02.07.2008 1.3 pounds
Total Cost - 251.83 pounds and 2.4 Euro

Acknowledgments

I would like to thank Dr. Anne-Marie Kermarrec and all the members in the ASAP
research group at INRIA for their hospitalities and the interesting discussions. I would
also like to thank the MiNEMA project of the European Science Foundation for providing
me the opportunity to take this very fruitful exchange visit.

References

[1] Shen Lin, Francois Taiani, Gordon S. Blair. GossipKit: A Framework of Gossip Pro-
tocol Family. In Proc. of the 5th Middleware for Network Eccentric and Mobile
Applications workshop, 11-12 September 2007, Magdburg, Germany.

[2] Shen Lin, Francois Taiani, Gordon S. Blair. Facilitating Gossip Programming with the
GossipKit Framework. To appear in Proc. of the 8th IFIP International Conference
on Distributed Applications and Interoperable Systems, 4-6 June 2008, Oslo, Norway.

[3] M. Clarke, G. Blair, G. Coulson, et al. An efficient component model for the construc-
tion of adaptive middleware. In Proc. of IFIP/ACM International Conference on
Distributed Systems Platforms and Open Distributed Processing, 2001.

[4] Mark Jelasity and Anne-Marie Kermarrec. Ordered Slicing of Very Large-Scale Over-
lay Networks. In Proc. of Peer-to-Peer Computing, 2006.

7

Figure 1: Boarding passes (Machester - Rennes)

1

Figure 2: Train ticket (Manchester Airport - Lancaster Rail Station)

2

Figure 3: Bus tickets

3

Pick-up Date Mon 09/06/2008 03:30Time
First Pick-up Shen Lin

Single Journey
Vehicle To Stay

Yes
No

Destination Manchester Airport Terminal 3
Arrival Date
Leave Date

Mon 09/06/2008
Mon 09/06/2008

05:00Time
Time

Back Date N/A Time

First Pick-up Instructions
House 3
Graduate College
Lancaster University

Tel: 07904683507

Destination Instructions

Seats Vehicle Description Price VAT % VAT TotalVehicle No
1 Toyota Prius £60.00 17.5 £10.50 £70.501

£60.00 £10.50 £70.50Movement Totals
Driver Description Vehicle No Driver Description Vehicle No
Driver 1
References
Purchase Order Number: 118104684
Flight Number: BE 7360

Passenger Destination: Southampton
Passenger Names: Shen Lin

The above client agrees to pre hire the above vehicle for a period as and from the date of this agreement until termination
of this agreement which shall occur on the last day of December 2008. It is agreed by all parties that the hire of the above
vehicle will have the services of a chauffeur included for the period of hire. The charges are as per our agreed rates. There
will be no penalties or charges for non-usage. The customer agrees that he/she has read the Terms and Conditions.

Signature Print Name Date

Acceptance
Ms RedburnClient
Lancaster UniversityCompany

Check In 1st Ltd

07904683507Client Ref 1
Client Ref 2

Private Hire ID 4789
Movement ID 9724

Client ID LAN010

Status Firm
Passengers 1

Distance

Coach Manager Printed: 09/05/2008 15:33:15

