

State of the Art Review of Distributed Event
Systems

Sasu Tarkoma and Kimmo Raatikainen

Helsinki University Computer Science Department
Helsinki Institute for Information Technology

© 2005 Sasu Tarkoma and Kimmo Raatikainen

Permission to copy without fee all or part of this material is granted provided that this copyright notice
and the title of the document appear.

Document Identifier C0-04
Document Status Final
Created 8 November 2005
Revised 19 February 2006

Distribution Public

Abstract
This document presents an overview of event systems and distributed
event frameworks with an emphasis on the special requirements presented
by mobile computing. An event-based framework can be decomposed
into two essential parts: event detection and event notification. The
former deals with the detection of the occurrence of a particular event of
interest, and the latter is the act of notifying interested parties that an
event has occurred.

Contents

1 Introduction..5
2 Event Models ..7

2.1 Events...7
2.2 Event Model...7
2.3 Event Routing ..8
2.4 Filtering..9
2.5 Content-based Routing...9
2.6 Quality of Service ..10
2.7 A Taxonomy ..10

3 Event Standards and Specifications ...13
3.1 Java Delegation Event Model ..13
3.2 Java Distributed Event Model..13
3.3 Java Message Service ..14

3.3.1 JMS and CORBA Interoperability...15
3.3.2 Wireless JMS ...17

3.4 CORBA Event Service ..17
3.4.1 Push and Pull..18
3.4.2 The Hybrid Model..19
3.4.3 Connecting Suppliers and Consumers ...19
3.4.4 Typed and Untyped Event Communication...19
3.4.5 Discussion ..20

3.5 CORBA Notification Service ..20
3.5.1 Filters ...21
3.5.2 Quality of Service (QoS) ...22
3.5.3 Structured Events ...22
3.5.4 Discussion ..23

3.6 CORBA Management of Event Domains..24
3.7 OMG Data Distribution Service (DDS)...25
3.8 W3C DOM Events ...26
3.9 Web Services Eventing (WS-Eventing)...27
3.10 COM+ and .NET..27

3.10.1 COM+ Event Service...27
3.10.2 Interoperability with .NET...29
3.10.3 .NET...29
3.10.4 MSMQ Product Architecture...29

3.11 Websphere MQ ..31
4 Event Systems...32

4.1 The Cambridge Event Architecture ...32
4.2 Scalable Internet Event Notification Architecture33

4.2.1 Naming and Filtering ...33
4.2.2 Routing...34
4.2.3 Forwarding Algorithm ...35
4.2.4 Implementation ..35
4.2.5 Simulation ..35
4.2.6 Current and Future Developments ...35

4.3 Scribe ...36

4.4 Elvin...37
4.4.1 Clustering...37
4.4.2 Federation ..38
4.4.3 Quench ...38
4.4.4 Mobile Users..38
4.4.5 Non-destructive Notification Receipt ..39

4.5 JEDI ...39
4.6 ECho ..41
4.7 JECho...41
4.8 Rebeca..42
4.9 Gryphon ...42
4.10 STEAM..43
4.11 Rapide ..44
4.12 DADI..44
4.13 Hermes ...45
4.14 Fuego Event Service ..45

5 Recent Research Areas in Publish/Subscribe..48
5.1 Mobility Support..48
5.2 Dynamic and Peer-to-Peer Systems...49
5.3 Formal Modelling ..50
5.4 Security ..51

6 Conclusions...52
References...54

1 Introduction

This document presents an overview of event systems and distributed event frameworks
[EFG03] with an emphasis on the special requirements presented by mobile computing. By
mobile or ubiquitous computing we mean the new field of research created by wireless
communication and the introduction of small, mobile devices. Traditionally, event-based
systems are based on a number of event sources and event sinks. Sources produce events and
they are delivered to event sinks that have a priori registered to receive them. An event-based
framework can be decomposed into two essential parts:

• Event detection, which deals with the detection of the occurrence of a particular event
of interest.

• Event notification, which is the act of notifying interested parties that an event has
occurred.

Many existing platforms employ the synchronous model of method invocation, in which
operations are performed on passive objects. This model is insufficient for reactive
environments, where components need to react to changes, or events, within the system and
give timely responses. An option would be to poll the states of objects, but too-frequent
polling burdens the system and too-infrequent polling delays the communication [BMH+00].
Asynchronous events support different application types as identified by [BMH+00]:

• Group interaction
• Multimedia support (multimedia control through rules)
• Mobility
• Alarms and exceptions
• Management

Reliable and efficient asynchronous event detection and event notification are vital for the
development of the next-generation distributed software for mobile Internet-aware devices.
Event frameworks provide a plug-and-play architecture for creating distributed applications.
Distributed architectures are based on middleware that provides the interoperability layer
required for heterogeneous cross operating system and cross-language operation and
communication. Components from different systems and different manufacturers can
interoperate using middleware such as CORBA, where the interface definitions created using
IDL (Interface Definition Language) may be shared.

Currently middleware solutions, such as Java, from the desktop world are being introduced
into the wireless world, where the requirements are different. Small and wireless devices have
limited capabilities compared to desktop systems: their memory, performance, battery life,
and connectivity are limited and constrained. The requirements of mobile computing need to
be taken into account when designing an event framework that integrates with mobile devices.
From the mobility and wireless viewpoint event systems can be divided into three distinct
categories:

1. Traditional event systems designed for fixed network operation.
2. Event systems that support intermittent clients using a client-server protocol and

possibly roaming between access nodes.
3. Ad-hoc networks, where clients can also be servers and servers may roam.

The first category is the most researched and most of the architectures presented in this
document fall into this category. Several architectures support intermittent clients and
roaming between access nodes. Ad-hoc event architectures are currently emerging.

From the small device point of view, message queuing is a frequently used communication
method because it supports disconnected operation. When a client is disconnected, messages
are inserted into a queue, and when a client reconnects the messages are sent. The distinction
between popular message-queue-based middleware and notification systems is that message-
queue-based approaches are a form of directed communication, where the producers explicitly
define the recipients. The recipients may be defined by the queue name or a channel name,
and the messages are inserted into a named queue, from which the recipient extracts
messages. Notification-based systems extend this model by adding an entity, the event service
or event dispatcher, that brokers notifications between producers of information and
subscribers of information. This undirected communication supported by the notification
model is based on message passing and retains the benefits of message queuing. In undirected
communication the publisher does not necessarily know which parties receive the notification.

This also applies to message-oriented middleware such as JMS [Sun01] that supports publish-
subscribe type of communication [SAS01]. Undirected communication decouples producers
and consumers from each other. In addition, many systems support filtering and pattern
detection that are used to reduce the amount of transmitted information and to improve the
accuracy of notifications. Content-based routing is flexible because it does not require
configuration information pertaining to channel names. Undirected communication may also
be used to deliver the same set of information to a number of client devices. However, this
requires associating user subscription information with a set of devices [SAS01, CDN01].

This document is structured as follows: chapter 2 introduces event models, and event
routing. Chapter 3 presents event standards and specifications such as the CORBA
Notification Service and DSS, JMS, and the COM+ and .NET event models. Chapter
4 presents research prototypes and examines the support for disconnected operation
and mobility in each of the presented event systems. Chapter 5 examines recent research
areas in pub/sub, namely mobility support, dynamic and peer-to-peer systems, formal
modelling of these systems, and security issues. Finally, chapter 6 presents the
conclusions.

2 Event Models

Event models consist of event sources, event listeners, notification services, filtering services,
and event storage and buffering services. In addition, there may be one or more authentication
schemes to enforce security and access control. This section focuses on the general definition
of events and event models.

2.1 Events

An event represents any discrete state transition that has occurred and is signaled from one
entity to a number of other entities. For example, a successful login to a service, the firing of
detection or monitoring hardware and the detection of a missile in a tactical system are all
events. The firing of each event is either deterministic or probabilistic. A source can generate
a signal every second making it deterministic. A stochastic source follows some probabilistic
model that can be described using, for example, a Markov chain. Both event qualities can be
modeled by building statistical or stochastic models of the firing behavior of the event source.
For example, a correlation analysis can be made between a series of event occurrences in time
or between two event sources. Such an analysis would measure how strongly one event
implies the other or how two event source firings are related.

Events may be categorized by their attributes, such as which physical property they are
related to. For instance spatial events and temporal events note physical activity. Moreover,
an event may be a combination of these, for example an event that contains both temporal and
spatial information.
Events can be categorized into taxonomies on their type and complexity. More complex
events, called compound events, can be built out of more specific simple events. Compound
events are important in many applications. For example, a compound event may be fired

• in a hospital, when the reading of a sensor attached to a patient exceeds a given
threshold and a new drug has been administered in a given time interval,

• in a location tracking service, where a set of users are in the same room or near the
same location at the same time, or

• in an office building, where a motion detector fires and there has been a certain
interval of time after the last security round.

Event-based interaction can be:

• discrete or
• continuous, as event streams.

Events can also have different prioritizations. Event aging assigns an expiry time to each
event notification. Event expiration prevents the spreading of obsolete information.

2.2 Event Model

The standard client/server communication models in distributed object computing are based
on synchronous method invocations. For example, COM+, Java RMI, and CORBA use
synchronous calls (CORBA 3.0 supports asynchronous invocations). This approach has
several limitations [GCSO01]:

• Tight coupling of client and server lifetimes. The server must be available to process
a request. If a request fails the client receives an exception.

• Synchronous communication. A client must wait until the server finishes processing
and returns the results. The client must be connected for the duration of the
invocation.

• Point-to-point communication. Invocation is typically targeted at a single object on a
particular server.

Mobile clients and large distributed systems motivate the use of asynchronous and
anonymous one-to-many distributed computing models. Event-based models address the
limitations of the standard client/server paradigm by introducing two roles: consumers and
producers. Since event models employ differing technical terms, in this chapter we consider
event consumers, listeners, sinks, and respectively event producers, sources, and suppliers to
be synonymous.

2.3 Event Routing

The event model consists of event listeners and event sources. A listener expresses interest in
an event supported by an event source and registers to receive notifications of that event
based on a set of parameters. Figure 1 presents a general model of the listener-source
paradigm, where the actual filtering and notification are treated as a black box, which can
reside either on the source or on the network. Ideally, the event source does not have
knowledge of all the parties that are interested in a particular event.

Figure 1. General model of the event source and event listener.

Event source fires events, and the listener is notified using some mechanism on the network
or in the client. The event system is a logically centralized component that may be a single
server or a number of federated servers. In a distributed system consisting of many servers,
there are two approaches for connecting sources and listeners:

• The event service supports subscription of events, and it routes registration messages
to appropriate servers (for example, using a minimum spanning tree). One
optimization to this approach is to use advertisements, messages that indicate the
intention of an event source to offer a certain type of event, to optimize event routing.

• Some other means of binding the components is used, for example, a lookup service.

In this context, by event listener we mean an external entity that is located on a physically
different node on the network. However, events are also a powerful method to enable inter-
thread and local communication, and there may be a number of local event listeners that wait
for local events.

Event routing requires that store-and-forward type of event communication is supported
within the network on the access nodes (or servers). This calls for intermediate components
called event routers. Each event source is connected to at least one router. Each router needs
to know a suitable subset of other routers in the domain. In this approach the request, in the

 Event source

Events

Listener

I’m interested in
event of type …
Register interface

Notification
interface

fire
 notification

event
registrations

Filters

worst case, is introduced at every router to get a full coverage of all message listeners. This is
not scalable, and the routing needs to be constrained by locality or by hop count. Effective
strategies to limit event propagation are zones used in the ECO architecture, the tree topology
used in JEDI, or the four server configurations addressed in the Siena architecture. Siena
broadcasts advertisements throughout the event system; subscriptions are routed using the
reverse-path of advertisements, and notifications are routed on the reverse-path of
subscriptions. IP Multicast is also a frequently used network-level technology for
disseminating information and works well in closed networks, however, in large public
networks multicast or broadcast may not be practical. In these environments universally
adopted standards such as TCP/IP and HTTP may be better choices for all communication
[IBM02a].

2.4 Filtering

Filtering reduces the number of events sent from the sources to the listeners by matching
events against a template. Those events that match the template are forwarded to the listeners.
Matching is usually done on single events, but may be also performed on compound events.
Filtering improves the scalability of the system. Also, the location of the filtering of events
affects the scalability of the framework. Here we face two separate issues: the filtering of
simple events and the filtering of compound events.

 Both kinds of event filtering can be done at several locations:

• At a centralized server (client-server).
• At the listener.
• At the event source.
• In the infrastructure (event routers).

Source-side filtering is more scalable than a centralized server or filtering at the listener.
Schemes that use multicasting and listener-side filtering place the burden on listeners and the
communication infrastructure. Filtering pertains to routing when it is done by intermediate
brokers connected into a routing topology.

2.5 Content-based Routing

Events are published in a named channel, or in an infrastructure of one or more routers that
can use the content of the events in making the forwarding decision. Named channels are also
called topics, and they represent an abstraction of numeric network addressing mechanisms.
With content-based addressing clients can change their interests without changing the
addressing scheme. With channel-based messaging, new channels need to be added to the
address space.

Content-based The routing decision is made based on the content, for example

strongly typed fields in the event message.
Subject-based The routing decision is made based on the subject of the event.
Channel-based (or
topic-based)

The routing decision is made based on the channel on which the
event is published. A channel is a discrete communication line with
a name.

The producers and consumers must agree on a channel. Content-based and subject-based are
more flexible than channel-based messaging, because this agreement is not necessary.
Channel-based messaging, however, allows the use of IP multicast groups. The subjects can

be allocated to multicast addresses. Channel-based routing can be emulated with content-
based systems by limiting to a universally defined subject field. Content-based event routing
has been proposed as one of the requirements for advanced applications, in particular for
mobile users [CW01].

Content-based routing takes place above the network level (level 3) and can be based on e.g.
IP multicast networks. In the content information model, the users subscribe to information
based on their preferences. The information, when it is available, is then delivered based on
these preferences. The subscription paradigm abstracts the publishers of information from the
receivers: information is not published to a set of addresses. Work has been done in using
multicast networks to deliver the information to the subscribers [CW01] using multicast
addresses. The granularity and flexibility of this approach depends on the size and number of
the virtual multicast addresses. As an alternative Carzaniga and Wolf present application-level
information broker with a rich information selection capability. They define a content-based
addressing scheme by considering the predicates that define subscriptions as the destination
addresses. Datagrams are implicitly addressed to a node by their content. The predicate model
is a set of boolean functions imposed on the datagram model. Content-based routing is done
using an algorithm that uses a forwarding table, which is a map of interfaces to their receiver
predicates. Content-based systems are contrasted with channel-based and subject-based
systems, because the selection is done based on the whole content. The other strategies offer
only a set of well-defined attributes for selection purposes. The drawback of content-based
systems is scalability.

2.6 Quality of Service

Applications based on event-style communication have varying reliability requirements. The
event system may support semantics ranging from "at-most-once" to "exactly-once". In
addition, there may be availability, performance, scalability, and throughput requirements.
The diverse nature of requirements calls for a number of implementations optimized for
different sets of requirements.

2.7 A Taxonomy

Event models can be grouped into a taxonomy by their properties. As contrasted with the
client-server paradigm, event models involve one-to-many communication. Other important
aspects for event model classification are [Mei00]:

• Does the model support distributed operation, local operation, or both? In a
centralized event model the event sources and listeners are located on the same host,
whereas in the distributed model they can be located on different hosts.

• Support for detecting composite events (compound events). Compound events require
more complicated filtering and history mechanisms.

• Support for Quality of Service requirements, for example, delivery semantics (best-
effort, at-most-once, …).

• Support for typed events, generic events, or both. Typed events have a well-defined
structure, for example a set of ordered strings, and generic events do not have an
expressive structure (datatype any).

• How decoupled the event listeners are from the event sources?
• Is the model subscription-based or advertisement-based?
• Support for channel-based, subject-based, or content-based routing.

Additional aspects are:
• Support for wireless systems and disconnected operation.
• Does the model support event routing, direct notification, etc.?
• How are interests defined and discovered? Not all models include discovery

functionality.

Figure 2 and Figure 3 present an example taxonomy based on the event architectures explored
in this review.

Figure 2. Example event model taxonomy.

Figure 3. Distributed event systems in the taxonomy.

3 Event Standards and Specifications

This chapter presents event standards and specifications. We start from the standard
centralized event model in Java, and continue with the Distributed Event Model in Java. We
present the Java Messaging Service in section 3.3, section 3.4 presents the CORBA Event
Service and section 3.5 the Notification Service. In section 3.6 we examine the CORBA
Management of Event Domains. We also examine OMG Data Distribution Service, W3C
DOM events, Web Services events, COM+ and .NET, and the WebSphere MQ architecture.

3.1 Java Delegation Event Model

The Java Delegation Event Model was introduced in the Java 1.1 Abstract Windowing
Toolkit (AWT) and serves as the standard event processing method in Java. The model is also
used in the Java Beans architecture and supported in the PersonalJava and EmbeddedJava
environments. In essence, the model is centralized and a listener can register with an event
source to receive events. An event source is typically a GUI element and fires events of
certain types, which are propagated to the listeners. Event delivery is synchronous, so the
event source actually executes code in the listener’s event handler. No guarantees are made on
the delivery order of the events [Mei00]. The event source and event listener are not
anonymous, however, the model provides an abstraction called an adapter, which acts as a
mediator between these two actors. The adapter decouples the source from the listener and
supports the definition of additional behavior in event processing. The adapter may
implement filters, queuing, and QoS controlling.

3.2 Java Distributed Event Model

The Distributed Event Model of Java is based on Java Remote Method Invocation (RMI) that
enables the invocation of methods in remote objects. This model is used in Sun’s Jini
architecture. The architecture of the Distributed Event Model is similar to the architecture of
the Delegation Model with some differences. The model is based on the Remote Event
Listener, which is an event consumer that registers to receive certain types of events in other
objects. The specification provides an example of an interest registration interface, but does
not specify such.

The Remote Event is the event object that is returned from an event source (generator) to a
remote listener. Remote events contain information about the occurred event, a reference to
the event generator, a handback object that was supplied by the listener, and a unique
sequence number to distinguish the event globally. The model supports temporal event
registrations with the notion of a lease (Distributed Leasing Specification). The event
generators inform the listeners by calling the listeners’ notify method.

The specification supports Distributed Event Adaptors that may be used to implement various
QoS policies and filtering. The handback object is the only attribute of the Remote Event that
may grow to unbounded size. It is a serialized object that the caller provides to the event
source; the programmer may set the field to null. Since the handback object carries both state
and behavior it can be used in many ways, for example to implement an event filter at a more
powerful host than the event source.

A mediator component can register to receive events and give a filter object to the source.
Upon event notification, the filter is handed back and the mediator can use it to filter the event
before handing it to the original event listener. The specification supports recovery from

listener failures by the notion of leasing. A lease imposes a timeout for event registrations.
This is used to ease the implementation of distributed garbage collection. Since this model
relies on RMI, it is inherently synchronous. Each notification contains a sequence number that
is guaranteed to be strictly increasing.

3.3 Java Message Service

Java Message Service (JMS) [Sun01] defines a generic and standard API for the
implementation of message-oriented middleware. The JMS API is an integral part of the Java
Enterprise Edition (J2EE) version 1.3. The J2EE supports the message-driven bean, a new
kind of bean that enables the consumption of messages. However, JMS is an interface and the
specification does not provide any concrete implementation of a messaging engine. The fact
that JMS does not define the messaging engine or the message transport gives rise to many
possible implementations and ways to configure JMS.

JMS supports a point-to-point (queues) model and a publisher/subscriber (topics) model. In
the point-to-point model only one receiver is selected to receive a message, and in the
publisher/subscriber model many can receive the same message. The JMS API can ensure that
a message is delivered only once. At lower levels of reliability an application may miss
messages or receive duplicate messages. A standalone JMS provider (implementation) has to
support either point-to-point or the publish/subscribe approach, or both. Normally, JMS
queues and topics are maintained and created by the administration rather than application
programs. Therefore the destinations are seen as long lasting. The JMS API also allows the
creation of temporary destinations that last only for the duration of the connection.

The point-to-point communication model consists of receivers, senders, and message queues.
Each message queue is addressed to a particular queue, and receivers extract messages from
the queues. Each message has only one consumer and the client acknowledges the successful
delivery of a message to the component that manages the queue. In this model there are no
timing dependencies between a sender and a receiver; it is enough that the queue exists. In
addition, the JMS API allows the grouping of outgoing messages and incoming messages and
their acknowledgements to transactions. If a transaction fails, it can be rolled back. In the
publish/subscribe model the clients address messages to a topic. Publishers and subscribers
are anonymous, and messaging is usually one-to-many. This model has a timing dependency
between consumers and producers. Consumers receive messages after their subscription has
been processed. Moreover, the consumer must be active in order to receive messages.

The JMS API provides an improvement on this timing dependency by allowing clients to
create durable subscriptions. Durable subscriptions introduce the buffering capability of the
point-to-point model to the publish/subscribe model. Durable subscriptions can accept
messages sent to clients that are not active at the time. A durable subscription can have only
one active subscriber at a time. Messages are delivered to clients either synchronously or
asynchronously. Synchronous messages are delivered using the receive method, which blocks
until a message arrives or a timeout occurs. In order to receive asynchronous messages, the
client creates a message listener, which is similar to an event listener. When a message arrives
the JMS provider calls the listener’s onMessage method to deliver the message. JMS clients
use JNDI to look up configured JMS objects. JMS administrators configure these components
using facilities specific to a provider (implementation). There are two types of administered
objects in JMS: ConnectionFactories, which are used by clients to connect with a provider,
and Destinations, which are used by clients to specify the destination of messages. JMS
messages consist of a header with a set of header fields, properties that are optional header
fields (application-specific, standard properties, provider-specific properties), and a body that
can be of several types.

Message selection is supported by filtering the message header against the given criteria using
an SQL grammar. A JMS message selector allows clients to define the messages they are
interested in. Headers and properties need to match the client specification in order to be
delivered to that client. Message selectors cannot reference values embedded in the message
body. An example is “JMSType=’stock’ AND company=’abc’ AND stockvalue > 100”.´JMS
supports five different messages types: Map, Object, Stream, Text, and Bytes. MapMessage is
a set of name/value pairs, where names are strings and values are primitive Java types.
ObjectMessage is a message containing a serializable Java object. StreamMessage is a stream
of sequential Java primitive values. TextMessage represents an instance using the
java.lang.String class and can be used to send and receive XML messages. BytesMessage is a
stream of bytes.

Typically a JMS client creates a Connection, one or more Sessions, and a number of
MessageConsumers and MessageProducers. Connections are created in the stopped mode.
After a connection is started (start() method) messages start arriving to the consumers
associated with that connection. A MessageProducer can send messages while a Connection
is stopped. A Session is a single-threaded context for consuming and producing messages.
Sessions act as factories for creating MessageProducers, MessageConsumers, and temporary
destinations. JMS defines that messages sent by a session to a destination must be received in
the order in which they were sent.

Messages are acknowledged automatically in the transactional mode (supported by the Java
Transaction API), however, if a session is not transacted there are three possible options for
acknowledgement: lazy acknowledgment that tolerates duplicate messages, automatic
acknowledgement, and client-side acknowledgement. In persistent mode delivery is once-and-
only-once, and in non-persistent mode the semantics are at-most-once. JMS messaging
proceeds in the following fashion:

1. Client obtains a Connection from a ConnectionFactory
2. Client uses the Connection to create a Session object
3. The Session is used to create MessageProducer and MessageConsumer objects, which

are based on Destinations.
4. MessageProducers are used to produce messages that are delivered to destinations.
5. MessageConsumers are used to either poll or asynchronously consume (using

MessageListeners) messages from producers.

The JMS API (1.0.2b) does not address load balancing, fault tolerance, error notification,
administration, or security. JMS implementations are available from many vendors, such as
IBM (it is supported in MQSeries), Sun Microsystems (J2EE), The ExoLab Group
(OpenJMS), SoftWired (iBus//Mobile), and Oracle (8i and later). The latest JMS version is
1.1, which incorporates changes approved by a Java Community Process program
Maintenance Review that closed on March 18, 2002. In JMS 1.0.2 client code must use the
queue and topic interfaces, and it is impossible to reuse queue clients with topics. JMS 1.1
supports client code that works simultaneously with either the point-to-point or
publish/subscribe domains. Queues and topics can be accessed through the same session and
thus in the same transaction.

3.3.1 JMS and CORBA Interoperability

The communication models of JMS and CORBA are similar, however, integration is
necessary in the areas of message conversion, filtering, and the incorporation of point-to-point
mode, which uses queues (CORBA uses publish-subscribe). The Notification Service
supports structured events defined in IDL, and JMS supports the five different message
formats. OMG is working on a Notification Service / JMS Interworking document [OMG02].

The RFP dealt with mappings between message types, reconciliation between different QoS
properties, the ability to maintain transactional message contexts across the services, and
implementations that facilitate end-to-end messaging between the services. The submission
document has been replaced with an OMG Final Adopted Specification, which is currently in
the finalization phase.

The specification defines a bridge that manages and interconnects an event channel with a
JMS destination. The principles behind the Bridge IDL definitions were to provide backward
compatibility with the programming models of NS and JMS. The Bridge is a stateful entity
that mediates messages between the two systems. Structured events are used to improve
performance. The Bridge is also used to automate the connection setups between channels and
destinations. A BridgeFactory object supplies Bridge objects depending on the parameters:
channel, destination, type of communication (push/pull), and message type (sequence, single).

Since JMS does not support pull at the source side, this is not supported. In the
implementation of PrismTech’s OpenFusion [Pri01] (Figures 4 and 5), the JMS event
producer is extended by a client-side library that transforms JMS messages to CORBA
Notification Service structure events. JMS consumers may use push and pull, but the
consumers of the Notification Service may only use one of these two approaches. JMS only
allows clients to specify filters on the message properties. To keep the information filterable,
this data needs to be included in the filterable body of a structured event. The JMS message
interface supports three attributes that are also supported in the Notification Service:

1. DeliveryMode (persistent, non-persistent which maps to best effort in CORBA NS)
2. Expiration (expiration in milliseconds, set to QoS in the variable Timeout)
3. Priority (Mapped to notification Priority QoS in the variable header)

Other user-defined name-value pairs are converted to IDL using the standard primitive
mapping. Since Notification Service uses the Extended Trader Constraint Language and JMS
uses the where clause of SQL92, the Notification Service needs to be extended to support
SQL92.

Figure 4. The OpenFusion Notification Service with JMS publish-subscribe
interoperability.

JMS
producer

Publish/Subscribe

Proxy
cons.

Proxy
cons.

Proxy
supplier

Master
queue

Cons.
Delivery
Queue

Delivery
Queue

JMS
adapter

JMS
Subsc.

JMS
adapter

Supplier

Figure 5. The OpenFusion Notification Service with JMS point-to-point interoperability
[Pri01].

3.3.2 Wireless JMS

The iBus//Mobile software from SoftWired consists of a server-side gateway for mobile
clients and a JMS compatible messaging server (iBus//MessageServer). The gateway enables
communication between a wide variety of devices running different operating systems, such
as PalmOS, Symbian, and PocketPC. The gateway supports communication over SMS,WAP,
TCP, UDP, and GPRS. The system supports corresponding Java virtual machines, J2ME
(CLDC and CDC), PersonalJava, and J2SE [R+01]. All communication between the clients
and the gateway is transmitted in binary form. From the JMS provider’s viewpoint the
gateway is a regular

JMS client and from the client’s viewpoint the gateway is a communication hub and a
wrapper for different transport and representation formats. In the case of SMS the gateway
accepts the incoming messages and a component within the service domain can respond with
SMS. The client side library takes a minimum of 70k and at runtime the CLDC version takes
a minimum of 50k of Java heap (as a comparison, a 8MB Palm has a 150k Java heap). The
iBus system supports security in the form of access control, certificates, and
symmetric/asymmetric keys. Cryptographic functions are supported through third-party
libraries. If the bearer does not support push-type connections, one connection is used for
sending client data to the server and another connection is used for communication from the
gateway to the client. Each HTTP request goes over the first connection: send data to the
servlet, and return. The second connection is open and blocks until there is traffic; after
receiving messages the connection is immediately re-established. The underlying library hides
the differences between the protocols.

3.4 CORBA Event Service

The CORBA Event Service specification (current version 1.1) defines a communication
model that allows an object to accept registrations and send events to a number of receiver
objects [Sie99]. The Event Service supplements the standard CORBA client-server
communication model and is part of the CORBAServices that provide system level services
for object-based systems. In the client-server model illustrated in Figure 6, the client makes a
synchronous IDL operation on a specified object at the server. The event communication is
unidirectional (using CORBA one-way operations) [OMG01a]. The Event Service extends
the basic call model by providing support for a communication model where client

JMS
producer

Point-to-point
Supplier

Proxy
cons.

Proxy
cons.

Master queue
Delivery
Queue

JMS
adapter

JMS
subsc.

JMS
adapter

applications can send messages to arbitrary objects in other applications. The Event Service
addresses the limitations of synchronous and asynchronous invocation in CORBA.

The specification defines the concept of events in CORBA: an event is created by the event
supplier and is transferred to all relevant event consumers. The set of suppliers is decoupled
from the set of consumers, and the supplier has no knowledge of the number or identity of the
consumers. The consumers have no knowledge of which supplier generated the event. The
Event Service defines a new element, the event channel, which asynchronously transfers
events between suppliers and consumers. Suppliers and consumers connect to the event
channel using the interfaces supported by the channel. An event is a successful completion of
a sequence of operation calls made on consumers, suppliers, and the event channel.

The event channel performs the following functions:

• It allows consumers to register interest in events and stores the registration
information.

• It accepts events generated by suppliers.
• It forwards events from suppliers to registered consumers.

The Event Service is defined to operate above the ORB architecture: the suppliers, the
consumers, and the event channel may be implemented as ORB applications and events are
defined using standard IDL invocations.

Figure 6. The standard CORBA client-server model of invoking operations from client
to the target object.

3.4.1 Push and Pull

The CORBA Event Service provides two models for initiating the transfer of events between
suppliers and consumers. The first model is the push model, in which suppliers send events to
consumer. In this case the suppliers are active and the consumers passive. Moreover, the
event channel actively delivers events to the consumers. In the second model, the pull model,
the consumers request events from the suppliers. Now, the consumer actively waits for pull

Client Object
Implementation

IDL stub IDL
Skeleton

Object Request Broker (ORB)

I. REQUEST

II. Invocation returns

requests to arrive. Upon the arrival of a pull request, the event is generated and sent to the
pulling consumer. CORBA supports both blocking and non-blocking pull.

3.4.2 The Hybrid Model

It is also possible to mix the push and pull models in one application, because the event
channel decouples the consumers and suppliers from each other. It is possible to connect
suppliers using the push model and consumers using the pull model. In the hybrid model, the
event channel does not take an active role in delivering the event to the consumers.

3.4.3 Connecting Suppliers and Consumers

The Event Service specification does not include a mechanism for locating or discovering
consumers or suppliers, however, it provides the administrative operations for connecting the
suppliers and consumers. Each new event consumer added to the event channel returns a
proxy supplier. The proxy supplier follows the supplier interface and adds a new method for
connecting a consumer to the proxy supplier. Each new event supplier added to the event
channel returns a proxy consumer. The proxy consumer has a new method for connecting to
the proxy supplier. A supplier is registered by taking a proxy consumer from the event
channel and connecting it with the supplier. Similarly, an event-receiving application takes a
proxy supplier from the event channel and connects to it by providing a consumer. Each
admin object is a factory that creates the proxy interface that is used in connecting the clients
and the event sources. Consumer admins create proxy suppliers and supplier admins create
proxy consumers.

3.4.4 Typed and Untyped Event Communication

The data of an event can be passed as invocation parameters or return values. Events are not
objects, because the CORBA object model does not support passing objects by value
(CORBA 2.3 supports valuetypes). Event data is application-specific and can be either
untyped or typed. In untyped communication the event is propagated by invoking a series of
generic push and pull operations. The push operation takes a single parameter of type any,
which allows any IDL defined datatype to be propagated, and stores the event data. The pull
operation has no parameters and transfers event data in its return value, which is of type any.
In untyped communication both the supplier and the consumer applications need to agree on
the data format of the event. In typed event communication events are propagated through an
application-specific interface created by the programmer in IDL. The programmer defines the
interface for event propagation that is used by consumers and suppliers. Parameters can be of
any suitable datatype supported by the IDL language. To setup typed push-style
communication, the consumers and suppliers exchange object references
(TypedPushConsumer and PushSupplier).

The supplier invokes a method to get a reference that supports the typed consumer interface.
The particular reference is associated with the TypedPushConsumer interface and needs to be
agreed on by both the consumer and the supplier. The supplier uses this reference to invoke
operations on the consumer. In the typed pull model consumers request event information
using some mutually agreed interface. The parties exchange the PullConsumer and
TypedPullSupplier interfaces, and an object reference supporting the typed interface is
obtained. Once the reference is obtained, the consumer can invoke operations on the supplier.

3.4.5 Discussion

The CORBA Event Service supports different implementations of the Event Channel, and this
allows a wide range of approaches for implementing Quality of Service and delivery issues.
Moreover, the event consumer and supplier interfaces support disconnection. The CORBA
Event Service addresses some of the problems of the standard CORBA synchronous method
invocations by decoupling the interfaces and providing a mediator for asynchronous
communication between consumers and suppliers. The supplier does not have to wait for the
event to be delivered to the consumer. Moreover, the event channel hides the number and
identity of the consumers from suppliers using the proxy objects (transparent group
communication). The supplier sends events to its proxy consumer, and the consumer receives
events from its proxy supplier. However, the specification does not address several important
issues, such as Quality of Service support. Applications may have requirements for event
notification in terms of reliability, ordering, priority, and timeliness. Furthermore, the
specification does not provide a system for event filtering. Event filtering needs to be
implemented using a proprietary system within the event channel by adding a mechanism for
selective event delivery. Event channels can be composed, because they use the same
consumer/supplier interfaces. An event channel can push an event to another event channel.
Typed event channels can be used to filter events based on event type [Bar01, OMG01a].

In addition, the specification does not address compound events, but suggests that complex
events may be handled by creating a notification tree and checking event predicates at each
node of the tree. The drawback of the tree is that the number of hops needed to deliver an
event increases.
This motivates the use of a centralized filtering service. The use of proprietary event service
implementations restricts the interoperability of applications. Applications that use one
proprietary event service implementation may not interoperate with another application that is
based on a different event service implementation.

3.5 CORBA Notification Service

The CORBA Notification Service (current version 1.0.1) [OMG01b] extends the functionality
and interfaces of the Event Service to support better interoperability [Bar01]. One of the most
significant additions to the Notification Service is event filtering. Filters allow consumers to
receive particular events that match certain constraint expressions. Filtering reduces the
number of events sent to the consumers and improves the scalability of the event handling
system. Figure 7 presents the components of the CORBA Notification Service, which derive
from the Event Service discussed in the previous section. The event channel has been
extended to support a number of admin objects. The Notification Service allows the definition
of filters at the proxies. Moreover, each admin object is seen as the manager of the set of
proxies it has created. Admin objects may be associated with QoS properties and filter
objects. The QoS properties and filter objects of the admin object are transferred to each
proxy it creates, however, the QoS properties may be changed on a per-proxy basis.

Figure 7. Components in the CORBA Notification Service [GCSO01].

3.5.1 Filters

Filters are CORBA objects that support the addition, modification, and removal of
constraints. Constraints are used to match event message values and refer to variables that are
part of the event notification message. Constraints are either event types or written in a
constraint language. Variable names can refer to all parts of the current notification. The
current notification is expressed with the dollar sign ’$’.

The default constraint grammar is Extended TCL (Trader Constraint Language specified by
the Trading Service). The Event Notification specification adds the notion of mapping filter
objects. Each proxy supplier may have an association with a mapping filter object, which
affects the priority and the lifetime property of the events it receives.

A sample notification constraint:

$.type_name == StockAlert
$.market_name == ’NASDAQ’
$.ticker == ’Company’
$.price > ’100’ or $.price < 80

Push supplier Pull supplier

Push consumer Pull supplier

Proxy Push Consumer Proxy Push Consumer

Event Channel

Proxy Push Supplier Proxy Pull Supplier

consumer
filter

consumer
filter

admin filter admin filter

supplier
filter supplier

filter

Consumer admin Supplier admin

3.5.2 Quality of Service (QoS)

The Notification Service defines standard interfaces that allow the control of characteristics
over the delivery of the notification. Service characteristics at different levels in the protocol
stack are represented using name/value pairs. QoS properties, tuples of the form <String,
Any>, can be used with an event channel, admin objects, proxy suppliers, proxy consumers,
and message instances.

Characteristics include:

• Discard policy that determines which notifications are discarded when resource limits
apply (queues are full).

• Earliest delivery time.
• Expiration time, which indicates the time range when the event is valid.
• Maximum number of notifications that can be queued for a single consumer. This

effectively places an upper bound that lessens the load presented by misbehaving
consumers.

• Order policy, which specifies the order in which notifications are buffered for
delivery.

• Priority of events.
• Reliability of event delivery
• Both event reliability and connection reliability. If fault tolerance properties are

specified, the Notification Service reconnects to the set of clients and delivers all non-
expired events to consumers after a crash or disconnection. At the message level: Best
effort, persistent.

Furthermore, the event channel supports the following QoS properties:

• MaxQueueLength, which specifies the maximum number of events that can be
queued.

• MaxConsumers, which specifies the maximum number of consumers that can be
connected to the channel.

• MaxSuppliers, which specifies the maximum number of suppliers that can be
connected to the channel.

3.5.3 Structured Events

The Notification Service defines a standard data structure for the events. The structured event
illustrated in Figure 8 is a strongly typed event message that consists of a header and a body.
The header contains two sections:

• The first stores fixed information, such as domain_name, event_name, and
type_name.

• The second section stores the variables and optional information about the event. This
is a sequence of properties to hold QoS information related to the notification.

The body of the structured event stores the actual event data and is also divided into two
sections:

• The filterable data, which is a sequence of properties. This part contains the fields that
the consumers use to base filtering decisions on.

• The payload data.

The header and body are structured into two parts mainly because of performance reasons.
When filterable data has its separate compartment, it is not necessary to touch the payload
data upon filtering. Moreover, the notification could be contained within the optional header
fields leaving the body empty. This would be even more streamlined.

Figure 8. The structured event: Event header and event body.

3.5.4 Discussion

The centralized nature of the Event Channel as a CORBA object limits its scalability. All the
registered consumers and suppliers are managed by the channel, which may limit the number
of active entities and also the maximum number of notifications that the event channel is
capable of processing in a given timeframe. Therefore it becomes important to create,
manage, and specify federations of event channels (Figure 9). Each event channel has a
master queue and a number of consumer queues. Each queue has some maximum capacity,
which may be enforced using QoS policies supported by the specification. One way to relieve
the bottleneck of the centralized event channel is to distribute these queues as CORBA
objects; however, this kind of solution is still centralized. Since NS supports the federation of
channels by connecting the supplier and consumer proxies, the system supports scalability.

Channel federation can be used to:

• Improve performance by distributing consumers on several event channels. Since an
event channel is a CORBA object, it may become a bottleneck if the number of
consumers (or producers) becomes large. Event channels may also be used to enhance
local delivery by assigning to each event channel only local subscribers. In this case
there is only one network invocation and a number of local invocations.

• Improve reliability by having multiple event channels for the same information. If
one event channel fails, it does not necessarily prevent consumers from receiving the
notifications.

• Improve flexibility by grouping consumers and producers into logical units (event
channels).

remainder_of_body

Filterable name_n

Filterable value_n

Filterable name_1

Filterable value_1

domain_type

type_name

event_name

Optional header
field name_1

Optional header
field value_1

field name_m field value_m

Event Header

Event Body

Figure 9. CORBA Notification Service channel federation.

The latest version of the CORBA Notification Service is 1.0.1, which is an editorial update
(04/08/2002). The revised version includes changes to Chapter 3: Modules and Interfaces.
Specific changes are marked with change bars. The reason for the editorial update was to
change all occurrences of the struct name in CosNotification to _EventType. The OMG has
started an effort to define a reliable multicast protocol for the CORBA Notification Service.
This protocol is used to dispatch publish and subscribe messages to a list of consumers.

3.6 CORBA Management of Event Domains

CORBA Event Service and Notification Service do not specify an event discovery service or
a mechanism to federate event channels. Moreover, the procedure for connecting event
channels is complex. The OMG Telecommunications Domain Task Force addresses these
issues in the CORBA Management of Event Domains Specification [OMG01b], which
specifies an architecture and interfaces for managing event domains. An event domain is a set
of one or more event channels grouped together for management, and for improved
scalability. The specification defines two generic domain interfaces for managing generic
typed and untyped channels. Moreover, a specialized domain for both channels and logs is
defined by the OMG Telecom Log Service specification.

The specification addresses [OMG01b]:

• connection management of clients to the domain,
• topology management,
• sharing the subscription and advertisement information in an event domain, even

when connections between event channels change at runtime,
• event forwarding within a channel topology, and
• connections between event channels.

Event service1

Event service2

Supplier

Supplier

Proxy
Supplier

Proxy
Supplier

Proxy
Supplier

Proxy
Supplier

Proxy
Consumer

Proxy
Consumer

Proxy
Consumer

Consumer

Consumer

Consumer

Channel

Channel

It supports the creation of channel topologies of arbitrary complexity, allowing cycles and
diamond shapes in the graph of interconnected channels. However, if events may reach a
point in the graph by more than one route duplicate events need to be detected and removed.
Moreover, if no timeouts are specified, events in a cycle will propagate infinitely. Therefore,
the specification defines mechanisms that are used to detect cycles or diamonds in the
network topology. Graph topology enforcement is done at channel connection time, and the
domain management refuses illegal connections. Event suppliers inform the proxy consumers
of event type changes using the offer_change callback. The channel is responsible for sharing
this information with the consumers by executing offer_change on them. The consumer may
be another channel and thus the change may propagate throughout the channel topology.
Subscription changes work similarly, and the channel is responsible for invoking the
subscription_change operation on all suppliers.

Event suppliers attached to the channel can obtain the types of subscriptions of event channels
anywhere downstream by invoking obtain_subscription_types on the proxy consumers.
Similarly an event consumer can obtain the event types offered by suppliers on any event
channel downstream by invoking obtain_offered_types on its supplier channels.

3.7 OMG Data Distribution Service (DDS)

The Data Distribution Service for Real-Time Systems (DDS) OMG specification was adopted
in June 2003 and finalized in June 2004. The specification defines an API for data-centric
publish/subscribe communication for distributed real-time systems. DDS is a middleware
service that provides a global data space that is accessible to all interested applications. The
specification describes the service using UML [OMG04].

DDS uses the combination of a Topic object and a key to uniquely identify instances of data-
objects. In this model, the subscriptions are decoupled from the publications. DDS creates a
name space that allows participants to locate and share objects. In case a set of instances are
under the same topic, these different instances must be distinguishable.

DDS uses a key to distinguish between these instances. The key consists of the values of
some data fields. These fields need to be indicated to the middleware. Different data values
with the same key value represent successive values for the same instance. Different data
values with different key values represent different instances. If no key is provided, the data
set associated with the Topic is restricted to a single instance.

A ContentFilteredTopic may be created for content-based subscriptions. In addition, the
MultiTopic can be used to subscribe to multiple topics and combine/filter the received data.
The filter language syntax is a subset of the SQL syntax.

The QoS usage follows the subscriber-requested publisher-offered pattern. In this pattern, the
subscribers request desired QoS properties and these are matched against those offered by the
producers.

DDS is suitable for signal, data, and event propagation. Signals represent continuously
changing data, for example from a sensor. In this case, publishers may set the reliability
property to best-effort and the history QoS property to retain the last signal (KEEP_LAST).
Data delivery, such as exchanging the state of a set of objects, can be realized by using
reliable communication and requiring that the last data elements are stored by the system.
Events are streams of values and publishers typically use reliable delivery and require that the
system keeps a history of all messages (KEEP_ALL).

DDS complements CORBA, because it provides a service more suitable for asynchronous and
dynamic operation. CORBA provides support for distributed objects in a client/server
environment and supports remote method calls. DDS is more suitable for flexible QoS-aware
data dissemination to many nodes in dynamic environments. Therefore, CORBA is object-
centric, whereas DDS is data-centric.

The CORBA Event Service decouples producers and consumers, but it is not data-centric and
does not offer QoS contracts. CORBA Notification Service offers a more data-centric
approach with filters and QoS support. DDS differs from these two services, because it does
not have to support the Common Data Representation or use the IIOP protocol. This means
that DDS services do not interoperate unless an interoperability specification is adopted. In
other words, a DDS implementation does not have to be CORBA based.

Figure 10 presents an overview of information flows in DDS. The data-objects are identified
by the Topic. The publishers are objects that use typed accessors, DataWriters, to
communicate data-objects. The subscribers are objects that use typed DataReaders to receive
information. A subscription is a subscriber with an associated DataReader.

Figure 10. Overview of information flows in DDS.

3.8 W3C DOM Events

W3C’s Document Object Model Level 2 Events is a platform- and language neutral interface
that defines a generic event system [W3C00]. The event system builds on the DOM Model
Level 2 Core and on DOM Level 2 Views. The system supports registration of event handlers,
describes event flow through a tree structure, and provides contextual information for each
event. The specification provides a common subset of the current event systems in DOM
Level 0 browsers. For example, the model is typically used by browsers to propagate and
capture different document events, such as component activation, mouse overs, and clicks.
The two propagation approaches supported are capturing and bubbling. Capturing means that
an event can be handled by one of the event’s target’s ancestors before being handled by the
event’s target. Bubbling is the process by which an event can be handled by one of the event’s
target’s ancestors after being handled by the event’s target. The specification does not support
event filtering or distributed operation.

Publisher

DataWriter

Subscriber

DataReader

Subscriber

DataReader

Data-Object
Identified by means
of the Topic Identified by means

of the Topic

Dissemination

Data values

Data values

Data values

The specification "An Events Syntax for XML" is a W3C Recommendation (11 October
2003) and defines a module that provides XML languages with the ability to integrate event
listeners and handlers with DOM Level 2 event interfaces [W3C03]. The specification
provides an XML representation of the DOM event interfaces. The ability to process external
event handlers is not required.

3.9 Web Services Eventing (WS-Eventing)

The Web Services Eventing (WS-Eventing) specification describes a protocol that allows
Web Services to subscribe or to accept subscriptions for event notifications [BMT04]. An
interest registration mechanism is specified using XML Schema and WSDL. The
specification supports both SOAP 1.1 and SOAP 1.2 Envelopes. The key aims of the
specification are to specify the means to create and delete event subscriptions, to define
expiration for subscriptions, and to allow them to be renewed. The specification relies on
other specifications for secure, reliable, and/or transacted messaging. The specification
supports filters by specifying an abstract filter element that supports different filtering
languages and mechanisms through the Dialect attribute. The filter is specified in the Filter
element.

3.10 COM+ and .NET

Standard COM and OLE support asynchronous communication and the passing of events
using callbacks, however, these approaches have their problems. Standard COM publishers
and subscribers are tightly coupled. The subscriber knows the mechanism for connecting to
the publisher (interfaces exposed by the container). This approach does not work very well
beyond a single desktop. Now, the components need to be active at the same time in order to
communicate with events. Moreover, the subscriber needs to know the exact mechanism the
publisher requires. This interface may vary from publisher to publisher making this difficult
to do dynamically (ActiveX and COM use the IconnectionPoint mechanism for creating the
callback circuit; an OLE server uses the method Advise on the IoleObject interface).
Furthermore, this classic approach does not allow filtering or interception of events [Pla99,
Sri01, Mic02].

3.10.1 COM+ Event Service

The COM+ event service [Pla99, Mic02] is an operating system service that provides
the general infrastructure for connecting publishers and subscribers. The service is a
Loosely Coupled System (LCS), because it decouples event producers from event
subscribers using the event service and a catalog for storing available events and
subscription information. In this architecture, an event is a method in a COM+
interface called the event method, and it contains only input parameters.

The following steps are required to produce an event (Figure 11):

1. An event Class is registered.
2. Subscriber registers for an Event.
3. Publisher creates an Event Object at run time.
4. Publisher fires the Event by calling the method in the Event Object.
5. Event Object reads the Subscription List from the Event Store.
6. Delivers the event to the subscriber by calling the appropriate method.

The change in the COM+ Event Service is the addition of the event service in the middle of
the communication. The event service keeps track of which subscribers want to receive the
calls, and mediates the calls. The event class is a COM+ component that contains interfaces
and methods. A subscriber needs to implement the interfaces in order to receive the event, and
a publisher calls the methods to fire events. Event classes are stored in a COM+ catalog that is
updated either by the publishers or by the administration. Subscribers register their wish to
receive events by registering a subscription with the COM+ event service.

A subscription is a data structure that contains the recipient, event class, and which interface
or method within that event class the subscriber wants to receive calls from. Subscriptions are
also stored in the COM+ catalog either by the subscribers or by the administration. Persistent
subscriptions survive restarting the operating system whereas transient subscriptions will be
lost on restart or reset. The publishers use the standard object creation functions to create an
object of the desired event class. This event object contains the event system’s
implementation of the requested interface. The publisher then calls the event method that it
wants to fire. The event system implementation of that interface searches the COM+ catalog
and finds all the subscribers who have expressed interests in that event class and method. The
event system then connects to each subscriber, using direct creation, monikers, or queued
components, and calls the specified method. Event methods return only success or failure.
Any COM+ client can become a publisher and any COM+ component can become a
subscriber.

Figure 11. The COM+ Event Service.

The current event system has several limitations. The subscription mechanism is not itself
distributed and there is no support for enterprise wide repository. Secondly, event
communication in the system is done either by DCOM or Queued Components, which are
both one-to-one communication mediums. The delivery time and effort increases linearly with
the number of subscribers, which means that the system is not scalable to firing events to
many subscribers. However, client-side disconnection is supported with queued components.
COM+ supports components that record a series of method invocations (event occurrences)
and are able to play them back in the recorded order. These components can be distributed
using messages. Since the event object may be defined as queuable, a disconnected client may
play back the desired event object upon reconnection. COM+ Events can be extended to
support filtering, which needs to be implemented either on the publisher side or on the
subscriber side. If an event is filtered by a component on the publisher side, it is never
delivered to the event service. If an event is filtered on the subscriber side the event service
will make the decision of whether to deliver the event to a particular subscriber [Mic02].

2. Registers

Publisher Event Object Subscriber

Event Class COM+ Catalog

1. Registers

4. Fires event

3. Creates
5. Reads list of
subscribers

6. Receives
event

Filtering on the publisher side is done by attaching a filter object to the event object interfaces
(which correspond to events). The filter may query the subscription information and, for
example, change the firing order for a set of subscribers. The subscriber-side filtering is done
using parameter filtering for each subscription and method invocation. Parameter filtering
evaluates the subscription FilterCriteria property against the parameters of the event method.
The filter criteria string recognizes relational operators, nested parenthesis, and the logical
keywords AND, OR, and NOT.

3.10.2 Interoperability with .NET

The COM+ Event System needs to generate some metadata in order to interoperate with the
.NET world. However, an abstract definition of the Event Interface, Event Classes, and their
attributes is needed [Kis01].

3.10.3 .NET

The .NET framework supports events at many levels. There is support for programming-
language-level events and interoperability with COM events. The interoperation of Visual
Basic .NET code and legacy COM component events is done using a runtime callable
wrapper (RCW). In VB.NET listeners create event handlers, which are added to sources. The
connection between events and event handlers is implemented by special objects called
delegates. The benefit of the .NET runtime is that the events from components written in
different languages, say C# and VB, are interoperable. Microsoft’s messaging infrastructure is
called Microsoft Message Queuing (MSMQ) [Mic99]. In this kind of architecture,
applications receive and send messages using queues. MSMQ supports disconnected
operation and is especially useful on intermittently connectedWindows CE/PocketPC devices.
MSMQ allows application writers to asynchronously send messages. MSMQ CE version can,
for example, be used

• for messages transferred when in range (delivery tracking, quality control),
• for messages transferred once in a while (intelligent set-top boxes, inventory control),

or
• when Producer and Consumer are not active at the same time.

3.10.4 MSMQ Product Architecture

The MSMQ architecture is presented in 12. MSMQ queues are either private or public. Public
queues are stored in a directory service called Message Queue Information Store. Public
queues are more expensive to use because directory access is not free. Moreover, Windows
CE clients cannot host public queues. The CE MSMQ independent client can operate
independently if the server is unavailable and store messages locally. The servers route and
store messages and support clients in the form of a client proxy server and a queue manager.
On the other hand, MSMQ supports also dependent clients that cannot store local messages
and need the server. The architecture supports three delivery options. Fast memory-based
reliable store-and-forward supports network loss, but not reboot, and cannot guarantee
exactly-once semantics. Persistent guaranteed store-and-forward supports reboot, and
persistent transactional message queuing guarantees exactly-once in-order delivery.
Transactional guarantee at commit time is about delivery to the local queue. In essence, the
system supports local all-or-nothing guarantee [Mic99].

The MSMQ version for Windows CE (2.12+) supports roaming and dynamic adapter
switching. It tracks Network Interface Cards (NIC) and restarts immediately after
reconnection. The transparent storage is based on one queue per file. The footprint of the
system is around 100-150K. The CE implementation has several limitations: clients must use
direct names, only private queues are supported, the routing is limited, transactions are not
supported (once and in-order are supported), there is no system support for encryption or
ACL, and there is no remote queue access. The system can be deployed in a client-server or
client-client environment and also for message-based IPC within a device.

The next version of MSMQ, Message Queuing 3.0, is available in Windows XP and supports
messaging over the Internet, a one-to-many messaging model, and message queuing triggers
[Mic02]. HTTP is supported as an optional transport protocol and an XML-based SOAP
extension is introduced that defines a reliable end-to-end messaging protocol. By default
MSMQ uses a proprietary TCP-based protocol. The system also supports real-time messaging
multicast using the Pragmatic General Multicast (PGM) protocol [S+01]. This protocol
supports only an at-most-once quality of service and does not support transactional sending.
The MSMQ 3.0 programming model is extended to allow an application to send a single
message to a list of destination queues.

Message Queuing Trigger is a service that allows an application to assign functionality in a
COM object to be triggered when a message arrives in a particular queue. Each trigger is
associated with a queue and applies a set of rules for every message arriving in that queue. An
action is executed when all conditions in a trigger hold [Mic02]. Message routing is done
using the lowest-cost route that is available. If a network fails, the next-lowest-cost route is
used to deliver the message. Administrators define costs for each network with the
management software (MSMQ explorer).

Figure 12. MSMQ Product Architecture. The Queue Manager connects to other Queue
Managers in order to communicate between different hosts.

MSMQ

APP1 APP2

API

open send rcv close

Queue Manager

System Message queues

3.11 Websphere MQ

IBM’s MQSeries, currently known as Websphere MQ, is one of the most popular MOM
products for electronic business. The product supports heterogeneous any-to-any
communication between 35 different platforms. MQ is compatible with JMS and integrates
with Java Beans 2.0 (EJB), XML, and JSP framework and servlets. MQ also supports SOAP
for Web service creation. A JMS 1.0.2 compliant embedded JMS provider supports point-to-
point and publish-subscribe messaging [IBM02b]. MQSeries Everyplace enables access to
enterprise data and supports mobile workers. Everyplace is available for a number of
platforms, for instance Linux, WinCE, EPOC, and PalmOS. The PDA type messaging is
similar to messaging for other platforms with queue managers. A queue manager manages
queues that store messages, and applications communicate with their local queue manager.
Remote queues are owned by remote queue managers, and each message that is inserted into a
remote queue gets transmitted over the network. The queue manager may support a local
queue, in which case the client is capable of supporting asynchronous communication. If no
local queue is present, the client is bound to synchronous communication. Another
configuration option is whether the client supports bridges and is capable of exchanging
messages with other MQSeries queue managers.

A typical client-server configuration is a scenario where a server hosts the queue manager and
clients connect to it with a bi-directional communication link (with a proprietary MQSeries
protocol). The client infrastructure is quite lightweight, because it is dependent on the server
queue manager. In a multi-server scenario, clients employ message channels, which support
unidirectional, safe, and asynchronous message exchange. Channels are a form of end-to-end
service provision and consist of the source queue manager, a number of intermediate
managers, and the destination queue manager. The footprint of the system is 64K for Palm
and 100K for a class file with Java devices [IBM02b].

4 Event Systems

This chapter presents event systems and prototypes. We present the Cambridge Event
Architecture, Siena, Scribe, Elvin, JEDI, ECho, JECho, Rebeca, Gryphon, STEAM, and
Rapide, DADI, Hermes, and the Fuego event system.

4.1 The Cambridge Event Architecture

The Cambridge Event Architecture (CEA) uses the publish-register-notify paradigm
[BMH+00], in which the object publishes its interface, for example specified in IDL (Interface
Definition Language, which is different from the IDL in CORBA). This interface includes the
events of which it is capable of notifying. A client invokes the object synchronously and can
register for events by indicating parameters (attributes) or wildcards. Wildcard matching is
applied on the parameters of a notification, but it may not be applied on the event type. The
template system provides rudimentary filtering by matching parameters one by one. The
object accepts registrations and notifies the clients that match the registration template. The
notification is performed when the event firing conditions and access restrictions are satisfied
(Figure 13). The paradigm supports direct source-to-client event notification.

In CEA an object, if asked, publishes the events it is capable of notifying of in IDL. The
object has a register method in its interface that has parameters for the type of event and
wildcards. Event occurrences are objects of a specific type, and the set of types defines the
level of event detection and notification granularity. CEA enforces access control upon
registration, and authentication is based on a parameter value. CEA supports defining
intermediate services, which are called event mediators in the architecture. Event mediators
act as middlemen between primitive event sources and event clients, and provide the facilities
for detecting more complex events. Moreover, if an event source cannot afford the overhead
of supporting template matching, it can send all its events to the mediator. The mediator then
matches the template on behalf of the source.

Figure 13. A publish-register-notify event architecture [BMH+00].

The mediator is capable of providing equivalent functionality to the CORBA event service.
The CORBA event service registers interests in all notifiable events with event sources and
supports both a synchronous pull interface and an asynchronous push interface. Composite
events can be detected by giving mediators the capability to filter simple events of different
types across different sources. The composite event detection functionality supported in CEA

Event client

Action

Event source

Synchronous
interface

Registration
interface

Notify

Synchronous method invocation

Register interest in event

Notification interface

Asynchronous notification of
matching events

is a feature that is not present in many event systems. The event composition is supported by
the combination of event templates. Composite events are detected by monitors, which are
busy until the event is detected and fired. A composite event specification language may be
used to design a monitor that detects complex templates. The system has been demonstrated
by implementing an active badge system that monitors badges within a building.

Composite events have also been investigated at Cambridge [PSB03] recently. This paper
presents a distributed framework for composite event detection and notification in a
distributed environment. The system is based on JMS, and leverages the features of the
underlying architecture. The key benefits of the proposed approach are the distribution of the
detection task, an automata-based detection engine, and the use of an interval time model to
detect the causality of events. A Lamport Logical Scalar Clock gives a causal ordering if such
exists (but not a strict causal ordering). The paper presents a specification language for
composite events. The system transforms the specification language to finite state machines.
Formal semantics are given for the interval time model. The problem of translating non-
deterministic automata to deterministic is not discussed other than to mention that the current
implementation uses non-deterministic automata with a list implementation.

4.2 Scalable Internet Event Notification Architecture

Siena (Scalable Internet Event Notification Service) is an Internet-scale event notification
service developed at the University of Colorado. Siena balances expressiveness with
scalability and explores content-based routing in a wide-area network. The basic publish-
subscribe mechanism is extended with advertisements that are used to optimize the routing of
subscriptions [CRW99]. Several network topologies are supported in the architecture,
including hierarchical, acyclic peer-to-peer, and general peer-to-peer topologies. Servers only
know about their neighbors, which minimizes routing table management overhead. Servers
employ a server-server protocol to communicate with their peers and a client-server protocol
to communicate with the clients that subscribe to notifications. It is also possible to create
hybrid network topologies.

Siena is similar to IP-multicast; however, the two mechanisms differ in the way they support
groups of subscribers. IP groups are not very expressive. They partition the IP datagram
address space and each datagram can belong to at most one group. Clearly, this creates
problems if an event that spans several groups of subscribers is to be delivered. Four different
server topologies have been identified in Siena: centralized, hierarchical, acyclic peer-to-peer,
and generic peer-to-peer.

4.2.1 Naming and Filtering

Siena is implemented with a flat event namespace, i.e. event names have no structural
correlation with each other. An event consists of a set of attribute-value pairs. Each attribute
has a name and a value. Siena supports the types null, string, long, integer, double, and
boolean. A filter consists of an attribute name, a constraint operator, and a constraint. Siena
does not support wildcards in the attribute name so the attribute names must match exactly to
the names in the published event. A filter may include several filtering clauses, which are
ANDed together. Thus every filtering clause or component must return true in order for the
filter to pass the event. Siena supports the operators equal, less than, greater than, greater than
or equal to, less than or equal to, string prefix, string suffix, always matches, not equal, and
substring.

Siena supports patterns, which are based on event attribute values and event combinations. A
pattern is a sequence of filters that is matched to a temporally ordered sequence of
notifications. Network latencies may cause some events to arrive in the wrong order, and
these are ignored by the Siena solution.

4.2.2 Routing

In Siena, each event consists of a set of attribute-value pairs that are matched with filters.
Each server on the event system routes events to other servers based on subscription
information, advertisement information, and filters. Each subscriber may specify a filter to
constrain the subscription. In the same fashion, each advertisement may also include a filter.
Siena evaluates the filters and follows a policy where events are replicated downstream and
filtered upstream. This means that events are replicated to the clients at the last possible
moment, thus reducing the bandwidth needed to transmit the events. Upstream filtering means
that events are filtered as close to the sources as possible in order to reduce the number of
uninteresting events transmitted over the network. The simple filter syntax allows the
decomposition of a complex filter into several more general filters, which can be evaluated
upstream. A filter is only applied if it is less general than the one used in upstream.

The same principle of upstream filtering also applies to event patterns. Patterns are
decomposed (factored) into elementary filters that are delegated to other servers. In the
delegation process a server tries to assemble sub patterns that are delegable to other servers.
Siena uses covering relations to determine when a filter covers a notification, a subscription
covers a notification, an advertisement covers a notification, or an advertisement covers a
subscription. For example, subscription S1 covers S2 if it evaluates to true in every instance
where S2 is true. Servers propagate the most generic subscription that covers a given set of
subscriptions. This minimizes the downstream data structures, however, the complex
computation cost is paid closer to the subscriber, because the subscriptions need to be
matched and evaluated. The results of Siena indicate that the covering relations exhibit a
complexity that is quite reasonable for a scalable service.

The Siena system supports two different notification semantics: subscription- based and
advertisement-based. In subscription-based semantics subscriptions are introduced at every
node of the event service and a notification is routed if it covers a subscription. In
advertisement-based routing servers use the information provided by event producers to route
incoming subscriptions. A subscription is only forwarded if it covers the advertisement.

An example event:
string stock "abc"
int value 2.53

An example filter:
string stock = "cde"
int value > 1.0
int value < 1.5

4.2.3 Forwarding Algorithm

The forwarding algorithm that was developed in conjunction with the Siena project consists
of a forwarding table and a set of processing functions. Conceptually the forwarding table is a
mapping between predicates (sets of filters) and interfaces to neighboring nodes. Each
predicate is a disjunction of filters, where each filter is a conjunction of elementary
conditions. Each elementary conjunction must return true in order for a filter (and predicate)
to map to an interface. Each filter may map to several interfaces [CDW01]. The forwarding
algorithm iterates over the event attributes. It searches for a partial match from the set of
filters, where a constraint belonging to a filter is matched by the given attribute. If the filter
(with the partial match) is not yet associated with an interface, the algorithm increases a
counter to keep track of matched constraints for the given filter. If the counter size is equal to
the number of constraints in the filter, the filter is said to match. After processing one filter
the algorithm checks if all filters are matched. The algorithm stops if either all attributes of
the notification or all filters are processed. The number of interfaces thus imposes an upper
bound on the processing along with the number of attributes and filters. The forwarding
algorithm is optimized using binary trees and lookup indices for attributes used in the filters.

The performance and scalability of the forwarding algorithm were demonstrated by running
experiments with 1000 messages and various numbers of filters and other parameters. It was
found that the algorithm has good absolute performance and good cost amortization over a
variety of loads. The constraint index, which acts as a lookup table for attribute names over
constraints, is used to quickly detect attribute names that have no matching constraints. If no
attributes match the event can be discarded by the router. The filter-matching algorithm has
recently been extended with several optimizations [CW03]. The algorithm uses a matching
structure based on an index and selections over attribute filters. The paper proposes several
enhancements, namely the selectivity table that is used to prune those predicates that cannot
be matched.

4.2.4 Implementation
The current Siena implementation is a prototype that consists of Siena servers and client-level
interfaces. The C++ version supports the peer-to-peer server and the Java version supports
hierarchical servers. Currently, the C++ implementation is not compatible with the Java
version. The Siena implementation uses TCP/IP for communication.

4.2.5 Simulation

The algorithms and topologies used in Siena were examined in a simulated environment. The
hierarchical client-server architecture should be used when there is a low number of parties
that subscribe and unsubscribe frequently. The acyclic peer-to-peer model was found to be
more applicable to situations where the total cost is dominated by notifications and there are
many ignored notifications [CRW99].

4.2.6 Current and Future Developments

Columbia University has developed the XML-based Universal Event Service (XUES) that
consists of three main services that support event handling for the Kinesthetics eXtreme (KX)
real-time monitoring architecture. The system inputs events using the Event Packager,
analyzes events using the Event Distiller, and dispatches events using the Event Notifier. The
system interacts with other event systems using XML, FleXML, and Siena. During the
development of the Siena-XML interface [Ere01] several problems with translating an XML-
based hierarchical namespace to a flat namespace were identified and addressed. In the

conversion process the nested structure of XML documents is converted into flat names that
preserve the hierarchy by separating the hierarchies with dots. This is a typical way of
describing hierarchical content; another would be to use the Windows or Unix file system
notation. Now, a problem arises when there are duplicate elements in a hierarchy, which
translate to an item with multiple values. Siena does not support this, and the Siena-XML
interface currently ignores these duplicate values. One solution would be to include support
for wildcards or multiple sets of values, for example simple list objects.

In the future Siena is envisaged to integrate at the network service level, coexisting for
example with TCP/IP instead of working above the network level. This would eliminate an
extra protocol layer, and provide greater efficiency in routing and forwarding. From the Siena
viewpoint TCP/IP performs explicit address routing and Siena is based on content-based
addressing. The risk in using Siena as a network service is that content-based routing is
computationally more expensive than explicit-address or subject-based routing [Ros01].
There is also work to make Siena support satellite-based wireless communication. Satellite-
based communication has desirable properties for transmitting events, because routing is not
necessary when the events are broadcast rather than sent using point-to-point communication
lines. Thus it is possible to notify large numbers of interested parties in one hop. However,
wireless networking is more unreliable than wired networking. Moreover, the receiving
devices may be different from desktop computers, thus requiring the solution to cope with
limited resources.

Siena has also been used as a peer-to-peer network similar to Gnutella. The Java-based Quad
uses the Siena prototype and supports query, advertise, and response. One of the differences
between Quad and Gnutella is that with Gnutella the messages are propagated to all servers
and filtering is performed by the provider at the last step. The main architectural difference
between Gnutella and Quad is the separation of clients and servers. Thus the general
advantage of peer-to-peer systems in dynamic networking is lost [Hei01].

Siena has been extended to support mobility and wireless clients. The mobility support
involves a handover protocol that uses either subscription-based or advertisement-based
semantics [CCW03]. One of the findings of the Siena project is that expressiveness and
scalability are in conflict. Expressiveness is related to flexibility of notification and routing.
Scalability, on the other hand, is about vast dimensions, heterogeneity, decentralization, and
the use of resources.

4.3 Scribe

Scribe [CDKR02] is a topic-based publish-subscribe system that explores the scalability of
the notification service in peer-to-peer environments. Scribe is built on top of Pastry, which is
a scalable, self-organizing peer-to-peer location and routing system. Scribe provides an
application-level multicast system. Pastry is based on uniform ID keys that are used as host
addresses. The system routes a message to the closest possible key. Scribe provides a best-
effort notification delivery on top of Pastry and specifies no particular event delivery order.
Moreover, Scribe does not support filtering, buffering, or mobility. The rendezvous point
forms the root of a multicast tree. In other words, the responsibility for a given topic (group of
subscribers) is hashed over the set of the servers. When a subscribe message is routed towards
the rendezvous point, each intermediate node adds the previous node to its table of children.
This information is used in the multicast protocol, which is similar to reverse path forwarding.
Events may be published directly if the IP address of the rendezvous point is known.
However, subscriptions need to be routed within the peer-to-peer topology. Access control
can be enforced at the rendezvous point. Pastry can route around faulty nodes by resending
the subscription and thus repairing the multicast tree.

4.4 Elvin

Distributed Systems Technology Centre (DSTC) has been developing the Elvin system since
1993 and it has grown from a single person research project to an effort with a team of
programmers and researchers. Elvin is a general event notification service, which aims to
improve on features identified in a 1995 survey of commercial event filtering software. Elvin
started as a publish-subscribe notification service, but currently it is referred to as a content-
based routing service. The Elvin team aims to standardize the Elvin protocol through the
Internet Engineering Task Force (IETF), and the Elvin protocols are written in the style of
IETF drafts. DSTC was a contributor to the OMG Notification Service RFP and one of the
submitters of the CORBA Notification Service.

Elvin uses a client-server architecture in notification delivery. Clients establish sessions with
Elvin servers and subscribe and publish notifications. An Elvin notification is a list of name-
value pairs, similarly to that of Siena. Basic primitives are a 32- and 64-bit integer, a 64-bit
double precision floating point, an internationalized string (UTF-8 encoded), and an array of
bytes. Subscription expressions are defined using logical expressions with a C-like syntax:
“stock == "abc" && value > 80”. The expressions are evaluated with Lukasiewicz’s tri-state
logic that uses an additional value of indefinite (i.e. true, false, indefinite). Elvin has language
bindings for C, C++, Java, Python, Smalltalk, Emacs Lisp, and Tcl. Elvin is content-based,
because it allows routing decisions to be made based on the whole message. Elvin features a
decoupled security model, in contrast with the traditional point-to-point model, in which
communication between publishers and subscribers is authenticated with keys. Producers and
consumers can have overlapping key sets. This supports multi-party authorization.

Service discovery is done using a lightweight protocol that is based on multicast. Once a
server has been deployed on the network, clients use the protocol to discover the server and
dynamically register. Clients also listen to router advertisements, which are also distributed
using multicast. Elvin 4.1 was released on March 19th in 2003. This version includes web-
based router management, configurable quality of service, support for automatic failover of
standby routers, federation between routers, and new scalability support.

4.4.1 Clustering

Elvin supports local clustering of servers that improves scalability and distributes the local
load. Clustering is used to implement a distributed, but single-subscription, address space.
Routers within a cluster communicate using a reliable multicast protocol over an IP network.
An Elvin router may force a client to reconnect to another server in order to reduce load. The
Elvin cluster is similar in functionality to a web farm. An Elvin router is a daemon process
that runs on a single server and distributes Elvin messages. Each router in an Elvin cluster
shares client subscription information with every other node. Not all subscription information
is shared, but only sufficiently in order for a router to decide if a given notification has any
subscribers at any server. The initial forwarding decision in server-server communication is
done based on a list of terms. Messages are first analyzed at a local router and then multicast
to the cluster. The set of destination routers is determined before multicasting by matching the
message against the term list. Each packet contains the unique identifiers of the routers that
have matching terms. This hasty approach results in a number of unnecessary notifications at
the router level. The Elvin team aims to improve this in the next version of the system.

The Elvin cluster topology consists of a single master router and a number of slave routers.
The master router maintains management data. All slave routers listen to management traffic
within the cluster and keep information about every node. Routers also keep information

about subscription terms of other servers, current states, the list of URLs offered by a router
for client connection, and current router load and statistics. Master servers listen for join
packets and keep track of the cluster as a whole. Anew master router is elected using an
election protocol if the old one fails. Communication between clients and routers employs
RPC-style communication with positive and negative acknowledgements. Delivery has best
effort, at-most-once semantics. In the client-server protocol the server may drop notifications,
but is obliged to warn the client that it has done so.

4.4.2 Federation

There is a different protocol for linking distributed clusters of servers to a federated system.
The Elvin federation protocol assumes that the federated topology forms a spanning tree.
Moreover, the linking protocol supports the definition of pull filters that constrain the
notifications sent to other clusters.

4.4.3 Quench

In Elvin terminology quench means an operation supported by all event producers that gives
the producers the possibility to evaluate a subscription expression to cease producing events
that are no longer needed. Quench is also used to determine which notifications should be
produced. In CORBA this would mean that the first event channel refrains from forwarding
unnecessary notifications (CORBA does not support client side filtering). The quench is a
semantic extension of the subscribe mechanism In Elvin quench is implemented in the client-
server protocol. Any client may request to be notified when the subscription information of
the server changes. The client may request information on named attributes in subscriptions.
The requested information is sent as an abstract syntax tree. There is also support for an
automatic quench, which is implemented in the client library.

4.4.4 Mobile Users

Elvin has been extended to support mobile users. One of the requirements was persistence in
order to keep undelivered notifications. Elvin is non-persistent by design so a prototype proxy
was designed to store notifications. The proxy model extends the client-server architecture of
Elvin by introducing the proxy as a third component. Proxies act as normal clients to servers,
but as proxy servers to clients. In this design, clients connect to these proxies, which mediate
the Elvin service [SAS01].

The proxy is able to handle multiple clients with separate sets of subscriptions. Elvin did not
support subscription grouping by the client, so support for this was added to the system (the
concept of a session). These sessions need not be client-specific, but may rather span multiple
clients or applications. This stems from the observation that many people have several
devices, but may wish to receive the same set of information regardless of the medium. In
order to manage the storage space for undelivered notifications, the proxy supports the
definition of a time-to-live (TTL) for each subscription. In addition, clients may specify the
maximum number of notifications to keep. In the current prototype clients explicitly connect
to the proxy, and they must connect to the same proxy to retrieve notifications. Proxy
discovery and roaming between proxies is not supported. The Elvin proxy service is proposed
as a solution to proxy roaming and client migration between networks. However, the
difficulty lies in that the proxy is a stateful entity, whereas normal Elvin servers are stateless.

4.4.5 Non-destructive Notification Receipt

For users who use many different devices and wish to share notifications, Elvin supports non-
destructive notification receipt. This means that the proxy does not destroy a notification upon
its successful delivery. Elvin ensures that notifications are never delivered to the same client
more than once. Because sessions may contain a number of clients, Elvin supports additional
management functionality regarding the set of subscription set by clients. Each client is
informed of the current subscription status. There may also be a number of sessions per client,
in which case only one notification is sent even if there are multiple matches.

4.5 JEDI

Java Event-based Distributed Infrastructure (JEDI) is a distributed event system developed at
Cefriel at Politecnico di Milano. In JEDI the distributed architecture consists of a set of
dispatching servers (DS) that are connected in a tree structure [CDN01]. Each DS is located
on a node of the tree and all nodes except the root node are connected to one parent DS. Each
node has zero or more descendants as shown in Figure 14. Event subscription and
unsubscription requests are propagated by each DS upwards towards the root. Event
notifications are processed similarly and forwarded by the local DS to its parent. Upon
receiving an event, each DS checks its descendants if they have an interest in the event, and, if
required, forwards the event down the tree. This strategy requires that a given DS knows the
event requests of its descendants in order to make the forwarding decision. Moreover, since
all requests and notifications are propagated up the tree, the communication and processing
overhead of the nodes near the root may become a bottleneck. If any of the nodes near the
root become disabled, parts of the tree become isolated. In this case the system needs to deal
with segmentation and to be able to mend the tree or negotiate a new root and a new tree.

A JEDI event is an ordered set of strings, the first string being the name of the event followed
by event parameters. An Event Dispatcher can subscribe to a single event or an event pattern.
Event patterns are used to filter events based on parameter matching, for example foo(aa*,bb)
matches all events named foo that have exactly two parameters and the first parameter starts
with aa and the second parameter is exactly bb. JEDI preserves causal ordering of messages,
that is, if event e1 caused the firing of event e2, e1 must be delivered first to all interested
subscribers. This mechanism allows a pair of components to synchronize through the
generation of events [CDNF01].

The JEDI architecture is being extended to support mobile clients and ad-hoc configuration
[CDNP00]. Publish/subscribe middleware is a good candidate for context-aware computing.
Asynchronous interest-based communication is a good start for building decoupled and
adaptive software components. Compositionality and reconfigurability are being emphasized,
and JEDI supports mobility with moveOut and moveIn operations. One issue is run-time
configuration of the dispatching system, which is also investigated by the JEDI project.

The dispatching servers in the JEDI architecture support mobility by allowing clients to
disconnect, move to a new dispatching server, and connect while retaining all the
notifications. The dispatching servers manage temporary storage for notifications. They also
coordinate that no duplicates are received and that the notifications are causally ordered
[CDN01]. The new dispatching server contacts the old one directly in order to receive the
accumulated notifications. The old DS notifies its parent-dispatching server to route any
further notifications for this client to the new DS. Notifications are routed in the JEDI
dispatching tree from producers to consumers and there is no possibility for adapting the
routing strategy to reflect changes in the pattern of communication.

The system offers good performance if the tree is organized in a good way that minimizes
network traffic. In essence, when clients migrate from one dispatching server to another the
load placed on the servers changes. It may be necessary to recreate the dispatching topology
to reflect these changes. JEDI approaches the adaptation of publish/subscribe systems to more
dynamic environments by extending the event routing mechanism with the addition of a new
spanning tree routing algorithm. Now, a delegate leader is responsible for each subscription.
The delegate accepts subscriptions of similar type and becomes the leader of the subscribers.
It also manages the distribution of the group in the tree. Each dispatcher knows the group
leaders for all subscriptions [CDNF01].

Figure 14. Event propagation in JEDI.

The JEDI approach is based on dynamically defining the dispatching tree by using approaches
similar to multicast routing. The first strategy is to create a minimal spanning tree for each
pair of publisher and group of subscribers, but this is considered to be inefficient. The second
strategy is to have a single routing tree for each group of subscribers and have different
publishers for the same class of events use the same tree. JEDI uses a method called the Core
Based Tree Strategy, in which the dispatchers are connected in a possibly cyclic graph and
each dispatcher knows its neighbors. Dispatchers broadcast all unique subscriptions to all
servers, and all subsequent subscriptions of the same type are sent to the party that sent the
original subscription. The original source dispatcher has implicitly become the leader of a
group of subscribers, and it maintains access to that group. Now, the source may balance load
by assigning subscriptions to dispatching servers. All dispatchers know all group leaders, and
those dispatchers that belong a group know the dispatching tree of that group. When a
component unsubscribes, the associated dispatcher either leaves the group, continues to route
notifications, or, if it was a leader, the system needs to elect a new leader for that group.

Mobility support in JEDI is still under consideration, for example the latency of updating the
dispatching trees when clients are moving very frequently and in the case of abrupt
disconnections are still open issues. The current focus is on what kind of abstractions are
needed at lower levels in order to detect disconnections at upper level. The scalability of the

DS

DS DS

DS DS

DS

Active
Object

JEDI system to Internet-wide use is an open issue. JEDI was used to implement the Orchestra
Process Support System (OPSS) workflow management system (WFMS) [CDNF01].

The JEDI project ended in 2000 and Cefriel has continued to work on event architectures.
They have a project on fault tolerance and scalability issues in distributed communication
based on the publish/subscribe paradigm. They continue to use the JEDI event dispatchers as
a reference implementation. The goal of this research is to implement a fault-tolerant JEDI.
Later the JEDI subscription propagation algorithm was improved by introducing
advertisements. This new algorithm is similar to the Siena work, and covering relations are
used to optimize routing. The impact of advertisements was evaluated using simulation, and
the results show that with advertisements the root node spends much less time processing
subscriptions. The simulation results on 8–85 dispatchers indicate that the processing time of
advertisements is quite low (2.65%–2.9%) [BDNFT00,BDNT00].

4.6 ECho

ECho is a high-performance data transport mechanism that is based on event channels
[EBS01]. ECho uses channel-based subscriptions, similarly to the CORBA Event Service.
ECho’s derived event channel mechanism implements filtering by adding an application-
supplied derivation function F to all listeners of a particular event channel, and by transferring
all events that are generated by the sources and passed through the filters to a derived event
channel. This scheme resolves issues in the delivery of unwanted events. ECho is especially
optimized for streaming data and data transmission. ECho has been shown to perform better
than Jini (distributed Java events), CORBA Event Channels, and XML-based messaging.
ECho was developed at Georgia Tech and the source is available for academic research
purposes.

4.7 JECho

JECho is a distributed event system that has been recently extended to support mobility using
opportunistic event channels [CSZ03]. The central problem is to support a dynamic event
delivery topology, which adapts to mobile clients and different mobility patterns. The
requirements are addressed primarily using two mechanisms: proactively locating more
suitable brokers and using a mobility protocol between brokers, and using a load-balancing
system based on a central load-balancing component that monitors brokers in a domain. The
mobility protocol is, in principle, similar to most mobility protocols (Wireless CORBA,
Siena, Rebeca, . . .). The filtering model is based on stateful user-defined objects, called
modulators, which may transform the event stream. This allows more fine-grained filtering
than non-state-based predicate matching. However, possible security problems are not
addressed, and it may be difficult to do optimizations between similar modulators. In addition,
client-based filtering is not addressed and it may also be difficult to implement efficiently. For
example, a mobile producer should download all relevant modulators from the broker.
Furthermore, no session management is provided so all user-specific modulators are
relocated.

The system supports load balancing and resource monitoring, which are novel features for
mobility-aware event systems. The paper presents simulation results for different scenarios,
for example, relocation overhead and mobility patterns. Mobility patterns are examined in a
100-node network using BRITE and the evaluation includes scenarios such as random walk,
salesman, pop-up, and fixed. Moreover, end-to-end delay and mobility/communication ratio
are measured using a real system with two subnets.

4.8 Rebeca

Rebeca is a distributed event system that supports mobile users and context-aware
subscriptions [FGKZ03]. The system supports both logical and physical mobility. The basic
system is an acyclic routed event network using advertisement semantics. The mobility
protocol uses an intermediate node between the source and target of mobility, called Junction,
for synchronizing the servers. If the brokers keep track of every subscription, the Junction is
the first node with a subscription that matches the relocated subscription propagated from the
target broker. If covering relations or merging are used this information is lost, and the
Junction needs to use content-based flooding to locate the source broker. A merging system
was developed in the Rebeca project for conjunctive filters.

4.9 Gryphon

The Gryphon system was developed at the Distributed Messaging Systems group at the IBM
T.J.Watson Research Center. Gryphon is a Java-based publish-subscribe message broker
intended to distribute data in real time over a large public network. Gryphon uses content-
based routing algorithms developed at the research center. The clients of Gryphon use an
implementation of the JMS API to send and receive messages. The Gryphon project was
started in 1997 to develop the next generation web applications and the first deployments
were made in 1999. Gryphon is designed to be scalable, and it was used to deliver information
about the Tennis Australian Open to 50000 concurrently connected clients. Gryphon has also
been deployed over the Internet for other real-time sports score distribution, for example the
Tennis US Open, Ryder Cup, and monitoring and statistics reporting at the Sydney Olympics.

Gryphon supports both topic-based and content-based publish-subscribe, relies on adopted
standards such as TCP/IP and HTTP, and supports recovery from server failures and security.
In Gryphon, the flow of streams of events is described using an information flow graph (IFG),
which specifies the selective delivery of events, the transformation of events, and the creation
of derived events as a function of states computed from event histories.

Information flow graphs contain stateless event transforms that combine events from various
sources, and stateful event interpretation functions that can be used to derive trends, alarms,
and summaries from published events. Each event is a typed tuple. Stateful events depend on
the event history. States are used to express the meaning of an event stream and the
equivalence of two event streams.
The Gryphon model consists of information spaces, which are either event histories or states.
Event histories grow monotonically over time as new events are published. Event sources and
sinks are modeled as event histories. States capture certain relevant information about event
streams, and they are typically not monotonic. Information spaces are defined using
information schemas. Dataflows are directed arcs that connect nodes in the graph, which
needs to be acyclic [BKS+99].

Gryphon supports four types of dataflows. Select is an arc that connects two event histories
with the same schema. Each arc is a predicate on the attributes of the event type in the
information space. All events that satisfy the constraint are delivered to the destination
information space. The transform arc connects any two event histories that may have different
schemas. Each arc has a rule for mapping event types between the two spaces. This rule may
include functions that transform particular event attributes. The collapse arc connects an event
history to a state using a rule. The rule maps a new event and a current state into a new state.
The expand arc is the inverse of collapse, and links a state to an information space.

When the state at the source of the arc changes, the destination space is updated in such as
way that the sequence of events it contains collapses to the new state. This transformation is
non-deterministic. Gryphon has two techniques for the implementation of systems based on
IFGs. The first is a flow graph rewriting optimization that allows stateless IFGs to be used
with multicast technology. The second is an algorithm for converting a sequence of events to
the shortest equivalent sequence of events.

The information flow graph is abstract and separated from the physical topology of the
network. The mapping of an IFG to a network of message brokers is nontrivial. Gryphon
reduces an arbitrary IFG by rewriting it. All the select operations are moved together and
closer to publishers and all the transform operations are also grouped together closer to the
subscribers. Transform operations are done at the periphery of the network.

The Gryphon system allows the representation of event histories as states, which is interesting
especially for mobile and disconnected users. Wireless users would benefit if a system could
inform them with a summary of events that occurred while they were disconnected (the state).
The Gryphon system detects failed brokers and reroutes traffic around failed nodes.
Moreover, the system incorporates several security mechanisms, such as access control, and
four authentication methods. Gryphon supports the JMS publish/subscribe API, and supports
topic-based subscription. In addition, clients may specify filters using the WHERE-clause of
SQL92 supported by JMS.

Gryphon extends the publish/subscribe one-to-many model with request-reply and solicit-
response models. By using unique topics JMS users can use request-reply-style messaging. In
the solicit-response model a client may make an advertisement to which one or
several clients may respond privately. The basic unit of the Gryphon multi-broker
configuration is the cell, which is a group of fully connected servers. Cells may be further
linked together for geographical scaling through link bundles. Link bundles provide redundant
connections between cells, which includes load balancing and fault tolerance not provided by
gateway-based approaches. The internal protocols and systems ensure that cycles are avoided
and messages are routed around failed nodes.

4.10 STEAM

The STEAM (Scalable Timed Events and Mobility) event system is specifically designed for
wireless ad-hoc networks [MC03]. The system uses three different filters to address the
problems related to dynamic reconfiguration of the network topology. Specifically, the
STEAM system is intended for WLANs using the ad-hoc network model, and the main
application domain is traffic management. The system uses an implicit event model in which
entities subscribe to interesting event types locally, and not by using a centralized broker.
STEAM exploits a group communication service for notifying interested entities. Groups are
geographically bound and nodes are identified using beacons.

The three filter types supported by STEAM are subject, proximity, and content filters. Events
consist of a name and a set of typed parameters. The name also determines the structure of the
event. A subject filter is matched against the event and mapped onto a proximity group. A
proximity filter corresponds to the geographical aspect of the proximity group. A proximity
filter specifies the scope in which events are disseminated. A proximity filter applies to an
event type and is established when the type is deployed. In essence, upon publication of an
event the source matches the subject and proximity, and the subscribers match the content.
This requires that the proximity filter at the producer must have location information from the
subscriber. The paper does not explain how this information is acquired, how often it is
updated, and how the security implications are handled. In essence the protocol is a wireless

application-level broadcast protocol with subject-based filtering at the source and content-
based filtering at the client.

Producers announce the event types they intend to raise (publish) with the geographical area,
called the proximity, within which events of this type are to be disseminated. The proximities
may be defined independently of the physical range of the communication system. The
routing layer may support multi-hop communication.

STEAM uses a Proximity-based Group Communication Service (PGCS). In this service,
groups are assigned certain geographical areas. A node that wants to join a group needs to be
located in the group’s area. STEAM provides a Proximity Discovery Service (PDS) that uses
beacons to discover proximities. Once a proximity is discovered the associated events are
delivered to the client if it has a matching subscription. PDS causes the middleware to join a
group if either a subscription or an announcement matches the group. The proximities are
static but clients may move. An experimental scenario is presented in [MC03]: traffic lights at
an intersection with experimental results with and without filtering. The results suggest that
distributed filtering, although simple in this case, is beneficial in ad-hoc environments and
may reduce the amount of transmitted traffic significantly.

4.11 Rapide

The Rapide language is designed to meet the requirements for architectural definition [LV95].
The main idea of Rapide is to use asynchronous events and their causal relations to model
both static and dynamic architectures. In this context, an architecture consists of interfaces,
connections, and constraints — an interface connection architecture. When the architecture
specification is executed all causal relations are stored and checked against the constraints.
The key requirements for the system were component abstraction, communication abstraction,
communication integrity, dynamicity, causality and time, hierarchical refinement, and
relativity. The interdependencies of Rapide components are modeled using partially ordered
sets. A pattern language is defined for detecting composite events. An event of a particular
action is a tuple of information with a unique identifier, a timestamp, and dependency
information. The system supports placeholders and universal quantification over types.
Patterns are used in interfaces to define behaviors and in architectures to define connections.

4.12 DADI

DADI (Discovery, Analysis and Dissemination of Information) is a research project at
Princeton that focuses on discovery, analysis and information dissemination on the Internet.
The project investigates the event-based model with emphasis on wide-area pub/sub. The
DADI effort includes a number of subprojects that cover the different layers of operation,
namely the system, algorithm, and application layers [CLS03, CSi04, CSi05].

The system layer encompasses architecture design for pub/sub and subscription-based content
delivery. The algorithm layer covers routing and matching algorithms for content-based
pub/sub. The application layer pertains to internet-scale persistent search.

4.13 Hermes

Hermes [PBa02,Pie04] is a peer-to-peer event system based on an overlay called Pan that
supports a variant of the advertisement semantics. Hermes leverages the features of the
underlying overlay system for message routing, scalability, and improved fault-tolerance.
Hermes supports the basic pub/sub operations introduced previously. Rendezvous points (RP)
are used to coordinate advertisement and subscription propagation. The RP manages an event
type and Hermes supports chaining RPs into type hierarchies. The RP of an event type is
obtained by hashing the event type to the flat addressing space of the overlay.

In type-based routing, any events conforming to the advertisement from the publisher are sent
on the forward path of the advertisement to the RP, which then forwards events on the reverse
path of any subscriptions. In type/attribute-based routing, the RP sends the subscriptions on
the reverse path of advertisements. Any events conforming to the advertisement from the
publisher are sent on the reverse path of subscriptions.

The model used by the Hermes system is the familiar advertisement semantics model used in
Siena and Rebeca with three key differences:

• All messages (type-based routing) or advertisements and subscriptions (type/attribute-
based routing) are sent towards the RP. Thus routing topology is constrained by the
RP.

• Advertisements are introduced only on the path from the advertiser to the RP.
• Subscriptions are introduced on the path from the subscriber to the RP. In addition,

for type/attribute-based routing subscriptions are sent on the reverse path of any
overlapping advertisements.

4.14 Fuego Event Service

The Fuego event service was developed in the Fuego Core 2002/2004 project at the Helsinki
Institute for Information Technology HIIT1. The event service addresses the challenges in the
mobile computing environment by providing an asynchronous content-based
publish/subscribe system that supports client mobility [Tar05].

A key component of the architecture is the Fuego event router. The event router is a
component that connects the publishers and subscribers and mediates event messages between
them. Typically, an event router consists of two parts: a set of neighbouring routers and a set
of local clients. Both sets are associated with a routing table that contains information about
which event messages should be forwarded to which neighbouring router or local client.

The event service and event router are part of the Fuego middleware service set, which
realizes a set of generic service elements pertaining to communication and data
synchronization. High-level services use the extendable messaging and RPC facilities
provided by the messaging service. The Host Identity Protocol implementation for Linux is an
optional component of the architecture, which is used for secure mobility and multi-homing
support. The HIP architecture is currently being standardized by IETF and it defines a new
cryptographic namespace between the network (L3 in OSI) and the transport (L4) layers. The
Fuego middleware has a Java API for HIP, which allows applications to use HIP features
[KTK05].

1 http://www.hiit.fi/fuego/fc

The primary data representation format of the system is XML according to the XML Infoset
specification. Since XML parsing is a time consuming activity, and XML documents are not
very space-efficient, a more efficient XML encoding is used for transmitting most XML
content. Use of XML lead to the selection of SOAP [W3C03b] as the primary communication
protocol in the architecture, transported using optimizations for wireless links. SOAP is used
for one-way and request-response messaging for relatively small XML documents and
fragments, and HTTP is used for bulk transfers of data. The current implementation supports
two message transport protocols: HTTP 1.1 and BEEP. BEEP supports reliability,
authentication, and the prioritization of messages.

The event service for mobile computing consists of two parts: the client-side API, and the
server-side system. The client-side API is similar in functionality to JMS and offers the basic
publish/subscribe functionality and session management. The server-side provides an
extensible framework for content-based routing with optimizations and mobility support. The
generic router implementation allows pluggable routing algorithms and routing table user
interfaces.

Events are represented according to the XML Infoset specification. All remote API calls use
the SOAP request-response protocol, and the notification of events uses asynchronous SOAP
messaging. The event router is implemented as an Apache Axis web service. The client side
API implementation uses wireless SOAP [KLT05] by default; however, a lightweight version
of the API was created for J2ME end systems that uses HTTP 1.1 and a proprietary binary
message format.

Filtering is a central core functionality for realizing event-based systems and accurate content-
delivery. Filtering may be optimized by using covering relations or filter merging [TKa05b].
The event service supports both through new generic data structures for content-based
routing. Any objects that implement methods for covering and merging are automatically
optimized. The system has a default filtering language, which is based on typed tuples and
disjunctive normal form based attribute-filters. Typically, events and filters are represented as
lists of typed tuples. In this case, an attribute filter is a 3-tuple <name, type, constraint>.

The router toolkit does not specify any particular routing topology, but rather allows the
developers to use the generic API methods available, leverage the efficient data structures for
various configurations, and develop various mobility protocols. As an example, the Fuego
router toolkit has been used to implement an event channel based configuration.

The server-side system consists of a set of event routers. Each router has two components: a
local routing table and a remote routing table. The local routing table stores filters set by local
clients and provides queue management for mobile and wireless clients. Disconnected clients
may retrieve queued events upon reconnection using push or pull semantics. The remote
routing table is responsible for communicating with other routers and forwarding events in the
distributed system. In order to support extensibility, the local and remote routing tables and
algorithms are separate objects, which may be changed if necessary.

This modularity allows the implementation of various distributed event routing semantics and
router topologies. Subscription semantics and advertisement semantics are examples of two
different interest propagation mechanisms. The former propagates subscription messages
throughout the system and events are routed on the reverse-path of subscriptions. In the latter,
advertisements are propagated throughout the system and subscriptions are routed on the
reverse-path of advertisements. Supported routing topologies include hierarchical, event
channel, and peer-to-peer topologies. The system also has separate user interface modules for
the routing tables.

The client-side API supports expressive operation with three mechanisms: multiple sessions,
expressive pull functionality, and fast subscriptions. The first approach allows clients to create
multiple sessions at different access servers for subscriptions with different maximum queue
sizes and delivery options. The client may have several sessions at different access servers,
for example to support different modes of operation. The second approach is realized by
pulling the notifications that match subscription identifiers or arbitrary filters. Thus the client
may subscribe different events, which are stored in the session – and when running on a small
client only the essential events may be retrieved using the pull operation.

5 Recent Research Areas in Publish/Subscribe

Research in publish/subscribe has recently gained popularity and current active reasearch
areas include mobility support, dynamic and peer-to-peer systems, formal modelling of
pub/sub systems, and security issues. In this chapter we briefly discuss these research areas.

5.1 Mobility Support

Mobility support [HGM01,PHJ02] is a relatively new research topic in event-based
computing. Mobility is an important requirement for many application domains, where
entities change their physical or logical location. Mobile IP is a layer-3 mobility protocol for
supporting clients that roam between IP networks [JPA04]. Higher-level mobility protocols
are also needed in order to provide efficient middleware solutions, for example SIP (Session
Initiation Protocol) mobility [SWe00]. Event-based systems require their own mobility
protocols in order to update the event-routing topology and optimize event flow.

JEDI was one of the early systems to incorporate support for mobile clients with the move-in
and move-out commands. JEDI maintains causal ordering of events and is based on a tree-
topology, which has a potential performance bottleneck at the root of the tree with
subscription semantics. Elvin is an event system that supports disconnected operation using a
centralized proxy, but does not support mobility between proxies.

Siena, Rebeca, and Hermes [PBa02,Pie04] support content-based routing of events using
covering relations. To our knowledge, covering relations were first introduced in the Siena
project and they support the optimization of event-based communication. Recently, mobility
extensions have been presented for several well known distributed event systems, such as
Siena and Rebeca.

Siena is a scalable architecture based on event routing that has been extended to support
mobility [CCW03]. The extension provides support for terminal mobility on top of a routed
event infrastructure. In addition, the Rebeca event system supports mobility in an acyclical
event topology with advertisement semantics [FGKZ03]. Context-aware subscriptions have
also been investigated in the Rebeca project.

Rebeca supports both logical and physical mobility. The basic system is an acyclic routed
event network using advertisement semantics. The mobility protocol uses an intermediate
node, between the source and target of mobility, called Junction for synchronizing the servers.
If the brokers keep track of every subscription the Junction is the first node with a
subscription that matches the relocated subscription propagated from the target broker. If
covering relations or merging is used this information is lost, and the Junction needs to use
content-based flooding to locate the source broker [MUH04].

JECho is a mobility-aware event system that uses opportunistic event channels in order to
support mobile clients [CSZ03]. The central problem is to support a dynamic event delivery
topology, which adapts to mobile clients and different mobility patterns. The requirements are
addressed primarily using two mechanisms: proactively locating more suitable brokers and
using a mobility protocol between brokers, and using a load-balancing system based on a
central load-balancing component that monitors brokers in a domain.

Mobility support in a generic routed event infrastructure, such as Siena and Rebeca, is
challenging because of the high cost of the flooding and issues with mobile publishers. The
standard state transfer protocol consists of four phases:

1. Subscriptions are moved from A to B.
2. B subscribes to the events.
3. A sends buffered notifications to B.
4. A unsubscribes if necessary.

The problem with this protocol is that B may not know when the subscriptions have taken
effect – especially if the routing topology is large and arbitrary. This is solved by
synchronizing A and B using events, which potentially involves flooding the content-based
network.

Recent findings on the cost of mobility in hierarchical routed event infrastructures that use
unicast include that network capacity must be doubled to manage with the extra load of 10%
of mobile clients [BJL04]. Recent findings also present optimizations for client mobility:
prefetching, logging, home-broker, and subscriptions-on-device. Prefetching takes future
mobility patterns into account by transferring the state while the user is mobile. With logging,
the brokers maintain a log of recent events and only those events not found in the log need to
be transferred from the old location. The home-broker approach involves a designated home
broker that buffers events on behalf of the client. This approach has extra messaging costs
when retrieving buffered events. Subscriptions-on-device stores the subscription status on the
client so it is not necessary to contact the old broker. In this study the cost of reconfiguration
was dominated by the cost of forwarding stored events (through the event routing network).

The cost of publisher mobility has also been recently addressed [MPJ05]. They start with a
basic model for publisher mobility that simply tears down the old advertisement and
establishes it at the new location after mobility. Thus a specific handover protocol is not
needed. They confirm the high cost of publisher mobility and present three optimization
techniques, namely prefetching, proxy, and delayed. The first exploits information about
future mobility patterns. The second uses special proxy nodes that advertise on behalf of the
publisher and maintain the multicast trees. The third delays the unadvertisement at the source
to exploit the overlap of advertisements, but does not synchronize the source and target
brokers.

A formal discrete model for both publisher and subscriber mobility was presented in [Tar05,
Tka05a, Tka05c]. In this work, two new properties are defined for the pub/sub topology,
namely mobility-safety and completeness. A handover protocol is mobility-safe if it prevents
false negatives. A topology or a part of a topology is complete if subscriptions and
advertisements are fully established (propagated) throughout it.

Mobility-safety of a generic stateful handover is shown in acyclic pub/sub networks. The
completeness of the topology is used to characterize pub/sub handover protocols and optimize
them. One of the results of this work is that rendezvous-points are good for pub/sub mobility,
because they can be used to limit signalling and flooding of updates.

5.2 Dynamic and Peer-to-Peer Systems

A number of overlay-based routing algorithms and router configurations have been proposed.
An application layer overlay network is implemented on top of the network layer and
typically overlays provide useful features such as fast deployment time, resilience and fault-
tolerance. An overlay-routing algorithm leverages underlying packet-routing facilities and

provides additional services on the higher level, such as searching, storage, and
synchronization services.

Good overlay routing configuration follows the network level placement of routers. Many
overlays are based on Distributed Hash Tables (DHTs), which are typically used to implement
distributed lookup structures. Many DHTs work by hashing data to routers/brokers and using
a variant of prefix-routing to find the proper data broker for a given data item. Hermes
[Pie04] and Scribe [RKC01] are examples of publish/subscribe systems implemented on top
of an overlay network and are based on the rendezvous point routing model. The Hermes
routing model is based on advertisement semantics and an overlay topology with rendezvous
points. This model was found to perform better than the acyclic topology [Pie04].

Typical fixed-network pub/sub routing algorithms are deterministic in nature. Basic routing
algorithms do not cope with topology changes. Dynamic connections between routers have
been investigated in [PCM03]. Recently, probabilistic algorithms have also been proposed for
better routing support in peer-to-peer and ad hoc environments [CPi05].

A topic-based multicast algorithm for peer-to-peer event dissemination is presented in
[BEG04]. The algorithm is “data-aware” in the sense that it exploits information about
process subscriptions and topic inclusion relationships. This “data-awareness” is used to limit
the membership information that each process needs to maintain. The paper discusses
tradeoffs between message complexity and reliability.

Gossip-based broadcast algorithms form a family of broadcast algorithms that contrast
reliability guarantees with scalability properties. A lightweight probabilistic broadcast,
lpbcast, is a decentralized gossip-based broadcast algorithm that offers scalability in terms of
throughput and memory-management [EGH03]. Decentralization means that the algorithm is
based only on local information.

The construction of an optimal pub/sub dissemination tree for routing information from
source to interested recipients was analyzed in [HGM03]. A greedy algorithm was proposed
as a solution to the tree building problem that builds the three in a fully distributed fashion.

A protocol for content-based message dissemination for mobile ad hoc networks (MANETs)
was presented in [BBC05] with simulation results. The protocol uses broadcast to send a
message to neighbour nodes. The forwarding decision made by these neighbours is based on
an estimation of their distance from a potential subscriber of the message.

An event dissemination algorithm for a topic-based pub/sub abstraction in MANETs is
presented in [BCG05]. The algorithm relies on the mobility of processes and the validity
period of events to ensure reliable dissemination. A general deterministic information
diffusion scheme was proposed in [ADG02]. The three main features of this scheme are
support for network reorganization, anonymity support, and decentralization.

5.3 Formal Modelling

Formal modelling of publish/subscribe systems and the correctness of content-based routing
protocols were examined in [Müh02]. A routing protocol is correct if it maintains required
safety and liveness properties. Since it may be difficult to maintain these properties in
dynamic pub/sub systems they may be relaxed. A self-stabilizing pub/sub system ensures
correctness of the routing algorithm against the specification and convergence [Müh02]. The
safety property may be modified to take self-stabilization into account by requiring eventual
safety.

The safety and liveness properties were extended in [TMü04] with the notion of message-
completeness and using propositional temporal logic. A message-complete pub/sub system
eventually acknowledges subscriptions and guarantees the delivery of notifications matching
acknowledged subscriptions.

A formal framework for modelling pub/sub systems is presented in [BBP05]. The framework
is based on two delays, namely the subscription/unsubscription delay and the diffusion delay.
The motivation for this abstraction is to model concurrent execution of the system without
waiting for the stability of the system state. This work differs from the previous liveness and
safety properties, because they focus on analytically to characterize the quality of the system.

A formal discrete model for pub/sub mobility is investigated in [Tar05, Tka05a, Tka05c].

5.4 Security

Security is also a recent research area for pub/sub systems and a fundamental requirement for
any real deployments of event systems. Typically, security requirements have not been taken
into account in research prototypes of systems. This has created the necessity for a number of
security services for pub/sub. These services are built on top of existing solutions and rely on
symmetric and asymmetric cryptography.

An overview of pub/sub security topics was given in [WCE02]. They propose several
techniques for ensuring the availability of the information dissemination network. Prevention
of denial-of-service attacks is essential and customized publication control is proposed to
mitigate large-scale attacks. In this technique, subscribers can specify which publishers are
allowed to send them information. A challenge-response mechanism is proposed, in which the
subscriber issues a challenge function, and the publisher has to respond to the challenge. The
use of the mechanism in a distributed environment was not elaborated.

General pub/sub security has been addressed recently, especially requirements, authentication,
confidentiality, and payment processing. Security-aware pub/sub systems include Hermes
[BEP03], EventGuard [SLi05], and Rebeca [FZB04]. The possibility of unsolicited bogus
messages originating from subscribers and producers is addressed in EventGuard. The
EventGuard system comprises of a set of security guards to secure pub/sub operations, and a
resilient pub/sub network [SLi05]. The basic security building blocks are tokens, keys, and
signatures. Tokens are used within the pub/sub network to route messages, which is not
directly applicable for content-based routing.

Pub/sub broker networks are vulnerable to message dropping attacks. For example, overlays
such as Hermes and Maia [PBa05] may suffer from bogus nodes. The prevention of message
dropping attacks has a high cost and only a few systems address them. The EventGuard uses
an r-resilient network of brokers [SLi05].

Secure event types and type-checking was proposed in [PBa05]. Secure event type definitions
contain issuer’s public key, version information, attributes, delegation certificates, and a
digital signature. We believe that secure event types and schemas are important for spam
prevention. Scope-based security was discussed in [FZB04], in which trust networks are
created in the broker network using PKI techniques. A proxy-based security and accounting
solution was proposed in [Khu05] for untrusted broker networks.

6 Conclusions

Message-oriented middleware and event notification are becoming more popular in the
industry with the advent of the CORBA Notification Service and DSS, the Java Messaging
Service, and other related specifications and products from many vendors. Many research
projects have addressed and are addressing issues of scalability, compound event detection,
mobility, and fault tolerance, to name a few topics. There are many ways to classify event
systems, and many possibilities for their use depending on the requirements. Traditional
MOM systems are getting influences from event-based systems. For instance, JMS supports
both queues and publish-subscribe style communication with filtering. However, these
systems usually lack support for distributed coordination in notification delivery, and they
employ topic-based routing. Current event systems are evolving towards content-based
routing, which uses the whole notification as an address. In content-based systems clients can
change their interests without changing the addressing scheme (adding a new topic).

Scalability has been emphasized in Siena, and it has been designed for Internet-wide
scalability and tested in a simulation environment with various network topologies. However,
scalability introduces latency, which creates problems for notification semantics and mobility.
Other systems address scalability and fault tolerance by creating clusters (Elvin) or cells
(Gryphon) that contain connected servers. These clusters are connected using point-to-point
links and possibly different protocols. Multicast and fault tolerance can be provided within the
clusters. Event systems are logically centralized, however, the CORBA Event Channel is also
physically centralized, creating a possible bottleneck.

Recently, creating event systems on top of DHTs and overlays has become an active area of
research. Systems such as Scribe and Hermes use the properties of the underlying overlay to
provide separation of concerns over basic message delivery in peer-to-peer environments, and
event dissemination. For example, DHTs are useful for building multicast trees rooted at
rendezvous-points, as demonstrated by Hermes and Scribe.

Ad-hoc networks are emerging with the introduction of short-range radio communications.
Ad-hoc event systems support the dynamic addition and removal of event servers (or event
dispatchers). However, ad-hoc event topologies are currently an emerging research topic and
some research issues have been raised in JEDI. STEAM supports ad-hoc event dissemination
and proximity groups. Many research papers also address multicast information delivery in
MANETs and the challenges posed by node mobility.

From the mobile Internet and ubiquitous computing viewpoint JEDI and Elvin were one of
the first systems to examine support for disconnected operation. JEDI supports both mobility
and disconnected operation as a service and Elvin only disconnected operation (with a few
additional features) as an extension to the original architecture. Almost all message queue
products support disconnection with various semantics. One important decision is whether to
include this support as an extension or as an integral part of the event service. If fault
tolerance or mobility are to be supported, it may be necessary to integrate this functionality at
the service level. Another open issue is whether the event service should reside at the network
level or at the application level. For Internet-scale routing, as proposed in Siena, it might be
beneficial to have some support at the network level. Siena has recently been extended to
support mobile clients, and JECho and Rebeca also have a handover procedure for relocating
subscriptions. Content-based routing and mobility is a challenging combination and most
routed event systems that use covering relations or filter merging may need to use flooding in
the mobility protocol.

Only a few architectures support complex compound event filtering. Usually event filtering is
done using simple parameter wildcard matching (JEDI), simple clauses (COM+, Elvin), SQL
(JMS, Gryphon), or Extended TCL (CORBA). Compound event detection is supported in
CEA with event templates and in Siena by detecting a sequence of simple filters. Compound
event detection is also a feature that may be integrated as an external component or within the
infrastructure. Many systems do not consider the process of locating and connecting
producers, or locating event channels (Notification Service). Some architectures, such as
Siena, JEDI, and Elvin, support this within the infrastructure. There are two completely
different problems: one is locating an access point using multicast or unicast to a known
address, and another is to use either the infrastructure or some other service to locate channels
or to subscribe. In systems such as Siena and JEDI, subscribing is accomplished by using
simple string-format requests. With CORBA it is necessary to obtain an event channel and go
through a more complicated procedure in order to obtain references to proxy objects. This
process of obtaining the event channel reference according to interests is not specified. OMG
DSS addresses this issue by making the discovery of topics easier.

Many message queue products are now supporting XML-based solutions, such as SOAP, as
one of the transport options. MQSeries, MSMQ, and .NET support SOAP, and Siena has
XML bindings as well. XML has many applications in messaging and event-based
communication. XML can be used to define the content of messages. For example, JMS
facilitates XML-based messages and the routing of XML documents.

The building blocks of the semantic web, such as ontologies, are not yet supported in pub/sub
systems. Ontologies and XML-derived languages could well be used to define events and
event systems, and to improve interoperability. XML and a suitable ontology would enable
the specification of complex event monitoring tasks that are uploaded to routers or, for
example, web services. In the future, it is envisaged that event applications have policies
(specified in XML, for example) for event semantics, access control and authorization,
buffering, and other information that affects the delivery of notifications.

References

[ADG02] Anceaume, E., Datta, A.K., Gradinariu, M., Simon, G. Publish/subscribe scheme

for mobile networks. In: Proceedings of the 2002 Workshop on Principles of Mobile
Computing (POMC 2002).

[Bar01] Dave Bartlett. CORBA junction: CORBA 3.0 notification service, May 2001.

http://www-106.ibm.com/developerworks/webservices/library/co-cjct8/.

[BBC05] Baldoni, R., Beraldi, R., Cugola, G., Migliavacca, M., Querzoni, L. Structureless

Content-Based Routing in Mobile Ad Hoc Networks. In: In proceedings of the
International Conference on Pervasive Services (ICPS05), Santorini, Greece, July 2005.

[BBP05] Baldoni, R., Beraldi, R., Piergiovanni, S.T., Virgillito, A. On the modelling of

publish/subscribe communication systems. Concurrency and Computation: Practice and
Experience 17 (2005) 1471-1495.

[BCG05] Baehni, S., Chhabra, C., Guerraoui, R. Frugal Event Dissemination in a Mobile
Environment. In the ACM/IFIP/USENIX 6th International Middleware Conference,
November 2005.

[BEP03] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and K. Moody. Role-

based access control for publish/subscribe middleware architectures. In Proceeding of the
2nd International Workshop on Distributed Event-Based Systems (DEBS’03), ACM
SIGMOD, San Diego, CA, U.S.A., 2003.

[BDNFT00] Giovanni Bricconi, Elisabetta Di Nitto, Alfonso Fuggetta, and Emma Tracanella.

Analyzing the behavior of event dispatching systems through simulation. In Proceedings
of the 7th International Conference on High Performance Computing, pages 131–140,
December 2000.

[BDNT00] Giovanni Bricconi, Elisabetta Di Nitto, and Emma Tracanella. Issues in analyzing

the behavior of event dispatching systems. In Proceedings of the 10th International
Workshop on Software Specification and Design, page 95, November 2000.

[BEG04] Sébastien Baehni, Patrick Th. Eugster, and Rachid Guerraoui. Data-Aware

Multicast (In Proceedings of the 5th IEEE International Conference on Dependable
Systems and Networks (DSN' 04), pages 233-242, June 2004.

[BJL04] I. Burcea, H.-A. Jacobsen, E. de Lara, V. Muthusamy, and M. Petrovic.

Disconnected operation in publish/subscribe middleware. In Mobile Data Management.
IEEE Computer Society, 2004.

[BKS+99] Guruduth Banavar, Marc Kaplan, Kelly Shaw, Robert E. Strom, Daniel C.

Sturman, andWei Tao. Information flow based event distribution middleware. In Wei Sun,
Sam Chanson, Doug Tygar, and Partha Dasgupta, editors, ICDCS Workshop on Electronic
Commerce andWeb-based Applications, pages 114–121, June 1999.

[BMH+00] Jean Bacon, KenMoody, Richard Hayton, et al. Generic support for distributed

applications. IEEE Computer, 33(3):68–76, March 2000.

[BMT04] BEA, Microsoft, TIBCO. Web Services Eventing (WS-Eventing), August 2004.
Available at: http://www-128.ibm.com/developerworks/webservices/library/specification/ws-

eventing/

[CCW03] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and evaluation of a support

service for mobile, wireless publish/subscribe applications. IEEE Transactions on
Software Engineering, 29(12):1059– 1071, Dec. 2003.

[CDKR02] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron.

Scribe: A large-scale and decentralized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communication, 20(8), October 2002.

[CDN01] Gianpaolo Cugola and Elisabetta Di Nitto. Using a publish/subscribe middleware to

support mobile computing. In Middleware for Mobile Computing Workshop, November
2001.

[CDNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI event-

based infrastructure and its application to the development of the OPSS WFMS. IEEE
Transactions on Software Engineering, 27(9):827–850, September 2001.

[CDNP00] Gianpaolo Cugola, Elisabetta Di Nitto, and Gian Pietro Picco. Content-based

dispatching in a mobile environment. In Workshop su Sistemi Distribuiti: Algorithmi,
Architectture e Linguaggi, September 2000.

[CDW01] Antonio Carzaniga, Jing Deng, and Alexander L. Wolf. Fast forwarding for

content-based networking. Technical Report CU-CS-922-01, Department of Computer
Science, University of Colorado, November 2001.

[CRW99] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Interfaces and

algorithms for a wide-area event notification service. Technical Report CU-CS-888-99,
Department of Computer Science, University of Colorado, October 1999. Revised May
2000.

[CRW01] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluationof a wide-

area event notification service. ACM Transactions on Computer Systems, 19(3):332–383,
Aug. 2001.

[CLS03] Mao Chen, Andrea LaPaugh, and J.P. Singh. Content Distribution for

Publish/Subscribe Services. In Proceedings of ACM/IFIP/USENIX International
Middleware Conference 2003, pp. 83 - 102.

[CSi04] Fengyun Cao and Jaswinder Pal Singh. Efficient Event Routing in Content-based

Publish-Subscribe Service Networks. In Proc. of IEEE INFOCOM 2004.

[CSi05] Fengyun Cao and Jaswinder Pal Singh. MEDYM: Match-Early and Dynamic

Multicast for Content-based Publish-Subscribe Service Networks. In the 6th
ACM/IFIP/USENIX International Middleware Conference, 2005.

[CSZ03] Yuan Chen, Karsten Schwan, and Dong Zhou. Opportunistic channels: Mobility-

aware event delivery. In ACM/IFIP/USENIX International Middleware Conference
2003,pages 182–201, June 2003.
http://link.springer.de/link/service/series/0558/bibs/2672/26720182.htm.

[CSZ03] Y. Chen, K. Schwan, and D. Zhou. Opportunistic channels: Mobility-aware event

delivery. In Middleware 2003, pages 182–201.

[CW01] Antonio Carzaniga and Alexander L.Wolf. Content-based networking: A new
communication infrastructure. In NSF Workshop on an Infrastructure for Mobile and
Wireless Systems, October 2001.

[CW03] Antonio Carzaniga and Alexander L. Wolf. Forwarding in a content-based network.

In Proceedings of 2003 conference on Applications, technologies, architectures, and
protocol for computer communications, pages 163–174, August 2003.

 [EBS01] Greg Eisenhauer, Fabián Bustamante, and Karsten Schwan. A middleware toolkit

for client-initiated service specialization. ACM SIGOPS Operating Systems Review,
35(2):7–20, April 2001.

[EFG03] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of

publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[EGH03] P. Th. Eugster, R. Guerraoui, S.B. Handurukande, P. Kouznetsov, and A.-M.

Kemarrec. Lightweight Probabilistic Broadcast, in ACM Transactions on Computer
Systems (TOCS), 21(4), pages 341-374, November 2003.

[Ere01] Justin R. Erenkrantz. Handling hierarchical events in an internet-scale event service,

March 2001. http://www.ucf.ics.uci.edu/~jerenk/siena-xml/SienaPaper.html.

[FGKZ03] Ludger Fiege, Felix C. Gartner, Oliver Kasten, and Andreas Zeidler. Supporting

mobility in content-based publish/subscribe middleware, June 2003.
http://citeseer.nj.nec.com/kasten03supporting.html.

[FZB04] L. Fiege, A. Zeidler, A. P. Buchmann, R. Kilian-Kehr, and G. Mühl. Security

aspects in publish/subscribe systems. In Third Intl. Workshop on Distributed Event-based
Systems (DEBS’04), Edinburgh, Scotland, UK, May 2004. IEE The Institution of
Electrical Engineers.

[GCSO01] Pradeep Gore, Ron Cytron, Douglas Schmidt, and Carlos O’Ryan. Designing and

optimizing a scalable CORBA notification service. ACM SIGPLAN Notices, 36(8):196–
204, August 2001.

[Hei01] Dennis Heimbigner. Adapting publish/subscribe middleware to achieve Gnutella-like

functionality. In Proceedings of the 2001 ACM Symposium on Applied Computing, pages
176–181, March 2001.

[HGM01] Huang, Y., Garcia-Molina, H. Publish/Subscribe in a Mobile Environment.
In: Proceedings of the 2nd ACM International Workshop on Data Engineering for Wireless
and Mobile Access (MobiDE), 2001.

[HGM03] Huang, Y., Garcia-Molina, H. Publish/subscribe tree construction in wireless ad-
hoc networks. In: 4th International Conference on Mobile Data Management (MDM 2003).

[IBM02a] IBM. Gryphon: Publish/subscribe over public networks., December 2002. (White

paper). Available at: http://www.research.ibm.com/distributedmessaging/gryphon.html

[IBM02b] IBM. MQSeries Everyplace for Multiplatforms Version 1, Release 2, 2002. (White

paper).

[JPA04] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. IETF, June 2004.

[Standards Track RFC 3775].

[Khu05] H. Khurana. Scalable security and accounting services for content-based
publish/subscribe systems. In SAC ’05: Proceedings of the 2005 ACM symposium on
Applied computing, pages 801–807, New York, NY, USA, 2005. ACM Press.

[Kis01] Roman Kiss. Using the COM+ event system in .Net applications, September 2001.

http://www.codeproject.com/csharp/solutionlcenotification.asp.

[KLT05] J. Kangasharju, T. Lindholm, and S. Tarkoma. Requirements and design for XML

messaging in the mobile environment. In N. Anerousis and G. Kormentzas, editors,
Second International Workshop on Next Generation Networking Middleware, pages 29–
36, May 2005.

[KTK05] Miika Komu, Sasu Tarkoma, Jaakko Kangasharju, Andrei Gurtov. Applying a

Cryptographic Namespace to Applications. Dynamic Interconnection of Networks (DIN
2005) ACM workshop in conjunction with Mobicom 2005.

[LV95] David C. Luckham and James Vera. An event-based architecture definition language.

IEEE Transactions on Software Engineering, 21(9):717–734, September 1995.
http://citeseer.nj.nec.com/luckham95eventbased.html

[MC03] René Meier and Vinny Cahill. Exploiting proximity in event-based middleware for

collaborative mobile applications. In 4th International Conference on Distributed
Applications and Interoperable Systems, pages 285–296, November 2003.

[Mei00] René Meier. State of the art review of distributed event models. Technical Report

TCD-CS-2000-15, Department of Computer Science, Trinity College, Dublin, Ireland,
March 2000.

[Mic99] Microsoft. Message Queuing on Windows CE, June 1999. Windows CE Developers

Conference, http://www.microsoft.com/msmq/downloads/devcon99.ppt.

[Mic02] Microsoft. Message Queuing in Windows XP: New Features, 2002. (White paper)

http://www.microsoft.com/msmq/MSMQ3.0_whitepaper_draft.doc

[MPJ05] V. Muthusamy, M. Petrovic, and H.-A. Jacobsen. Effects of routing computations in

content-based routing networks with mobile data sources. In MobiCom ’05: Proceedings
of the 11th annual international conference on Mobile computing and networking, pages
103–116, New York, NY, USA, 2005. ACM Press.

[Müh02] G.Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,

Darmstadt University of Technology, September 2002.

[MUH04] G. Mühl, A. Ulbrich, K. Herrmann, and T. Weis. Disseminating information to

mobile clients using publish/subscribe. IEEE Internet Computing, pages 46–53, May 2004.

[OMG01a] Object Management Group. CORBA Event Service Specification v.1.1, March

2001.

[OMG01b] Object Management Group. Management of Event Domains Specification, June

2001. Available at: http://www.omg.org/cgi-bin/doc?formal/2001-06-03

[OMG02] Object Management Group. Joint Initial Submission regarding the JMS

Notification Service RFP, January 2002. Available at: http://www.omg.org/cgi-
bin/doc?telecom/02-01-02

[OMG04] OMG Data-Distribution Service for Real-Time Systems. Available at:
http://www.omg.org/cgi-bin/doc?ptc/2004-03-07.

[Pie04] P. R. Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD thesis, Computer

Laboratory, Queens’ College, University of Cambridge, February 2004.

[Pla99] David Platt. TheCOM+ event service eases the pain of publishing and subscribing to

data. Microsoft Systems Journal, September 1999. Available at:
http://www.microsoft.com/msj/0999/comevent/comevent.aspx

[PBa02] P. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware

architecture. In Proceedings of the 1st International Workshop on Distributed Event-Based
Systems (DEBS’02), 2002.

[PBa05] L. Pesonen and J. Bacon. Secure Event Types in Content-based, Multi-Domain

Publish/Subscribe Systems. In Proceedings of SEM 2005. ACM, sep 2005.

[PCM03] Picco, G.P., Cugola, G., Murphy, A.L. Efficient content-based event dispatching in

the presence of topological reconfiguration. In: 23rd International Conference on
Distributed Computing Systems (ICDCS 2003), 19-22 May 2003, Providence, RI, USA.
(2003) 234-243.

[Pri01] Prism Technologies. Open Fusion Notification Service, May 2001. (White paper)

[PHJ02] I. Podnar, M. Hauswirth, and M. Jazayeri. Mobile push: Delivering content to mobile

users. In Proceedings of the 22nd International Conference on Distributed Computing
Systems, pages 563–570. IEEE Computer Society, 2002.

[PSB03] Peter R. Pietzuch, Brian Shand, and Jean Bacon. A framework for event composition

in distributed systems. In Proceedings of the 4th International Conference on Middleware,
pages 62–82, June 2003.

[R+01] Bill Ray et al. Professional Java Mobile Programming. Wrox Press, Birmingham,

United Kingdom, July 2001.

[Ros01] David Rosenblum. A tour of Siena, an interoperability infrastructure for internet-

scale distributed architectures. In Ground System Architectures Workshop, February 2001.

[RKC01] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe: The

design of a large-scale event notification infrastructure. In J. Crowcroft and M. Hofmann,
editors, Networked Group Communication, volume 2233 of Lecture Notes in Computer
Science, pages 30–43. Springer, 2001.

[S+01] Tony Speakman et al. RFC 3208: PGM Reliable Transport Protocol Specification.

Internet Engineering Task Force, December 2001. Available at:
http://www.ietf.org/rfc/rfc3208.txt

[SAS01] Peter Sutton, Rhys Arkins, and Bill Segall. Supporting disconnectedness—

transparent information delivery for mobile and invisible computing. In Proceedings of the
1st International Symposium on Cluster Computing and the Grid, page 277, May 2001.

[Sie99] Jon Siegel. Anoverview ofCORBA3. In Proceedings of the Second International

Working Conference on Distributed Applications and Interoperable Systems, July 1999.

[Sri01] Paddy Srinivas. Introduction to COM+ events, March 2001. Available at:
http://www.idevresource.com/com/library/articles/com+eventsintro.asp.

[SLi05] M. Srivatsa and L. Liu. Securing publish-subscribe overlay services with eventguard.

In CCS ’05: Proceedings of the 12th ACM conference on Computer and communications
security, pages 289–298, New York, NY, USA, 2005. ACM Press.

[SWe00] H. Schulzrinne and E. Wedlund. Application-layer mobility using SIP.

SIGMOBILE Mob. Comput. Commun. Rev., 4(3):47–57, 2000.

[Tar05] Sasu Tarkoma. Efficient and Mobility-aware Content-based Routing Systems. Ph. Lic

Thesis. University of Helsinki, Department of Computer Science, 2005.

[TKa05a] Sasu Tarkoma and Jaakko Kangasharju. Handover Cost and Mobility-Safety of

Content Streams. In Eighth ACM/IEEE International Symposium on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, October 2005.

[TKa05b] Sasu Tarkoma and Jaakko Kangasharju. Filter Merging for Efficient Information

Dissemination. In 13th International Conference on Cooperative Information Systems,
Lecture Notes in Computer Science 3760, Springer-Verlag, October 2005.

[TKa05c] Sasu Tarkoma and Jaakko Kangasharju. Mobility and Completeness in

Publish/Subscribe Topologies. In IASTED International Conference on Networks and
Communication Systems, ACTA Press, April 2005.

[TKa05d] Sasu Tarkoma and Jaakko Kangasharju. A Data Structure for Content-based

Routing. In Ninth IASTED International Conference on Internet and Multimedia Systems
and Applications, ACTA Press, February 2005.

[TMü04] Andreas Tanner and Gero Mühl. A Formalisation of Message-Complete

Publish/Subscribe Systems. Technical Report 2004/11, Berlin University of Technology.

[Sun01] Sun Microsystems. Java Message Service Specification, June 2001.

[WCE02] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Security issues and

requirements for internet-scale publish-subscribe systems. In the proceedings of the
Hawaii International Conference on System Sciences, jan 2002.

[W3C00] World Wide Web Consortium. Document Object Model (DOM) Level 2 Events

Specification,Version 1.0, November 2000. [Recommendation]. Available at:
http://www.w3.org/TR/DOM-Level-2-Events/

[W3C03] World Wide Web Consortium. XML Events—An Events Syntax for XML,

February 2003. [Candidate Recommendation]. Available at:
http://www.w3.org/TR/2003/CR-xml-events-20030207

[W3C03b] World Wide Web Consortium. SOAP Version 1.2, June 2003. [W3C

Recommendation].

