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1.  INTRODUCTION 
 
Heisenberg’s uncertainty relations state that it is impossible to predict the result of a 
measurement with a precision lying beyond its limits. In practice this formula defines, 
in standard quantum mechanics, the limits of the previsional measurement space 
accessible to any measurement. Beyond it is impossible to perform any concrete 
measurement.  
 In the last years a strong effort was made to develop causal quantum physics in the 
spirit of de Broglie and Einstein. These efforts were carried out mostly with the help of 
a recent mathematical tool, the wavelet analysis, developed precisely to overcome some 
inconveniencies of the Fourier non-local analysis. As a consequence of this work, a 
more general expression for the uncertainty relations, containing the usual ones as a 
particular case, were derived. These more general uncertainty relations define a 
predictive measurement error space including the usual Heisenberg space. In this new 
space the prevision of the precision of a result of a measurement depends only of the 
basic measuring tool used in a concrete experiment. If one wishes to predict the result of 
a measurement with greater precision it is necessary to change the basic measuring tool. 
In the language of local wavelet analysis this corresponds to say that one has to use a 
mother wavelet of a smaller scale. By changing the scale of the basic wavelet it is 
possible, in principle, to scan all the predictive measurement space.  

For some time those ideas had no experimental support, even if the new approach 
explained the experimental evidence, which is not a surprise, since the new relations 
contain the usual ones as a particular case. Now, thanks to the recent development of a 
new generation of microscopes that have a resolving power that goes far beyond Abbe’s 
limit of half wave length, there are measurements, done everyday, that are outside the 
Heisenberg’s space.  
 
2.  WAVELET ANALYSIS AND THE NEW UNCERTAINTY RELATIONS 
 
The wavelet local analysis [1] was developed in the early eighties by Jean Morlet, a 
French geophysicist working in oil prospection. He devised this mathematical tool for 

Talk at the International Conference on the foundations of quantum mechanics, Vigier II, Berkely, September, 
2000. The corrected final version appeared in in Gravitation and Cosmology; From Hubble Radius to Planck 
Scale, eds. R.L. Amoroso, G. Hunter, M. Kafatos, J-P. Vigier , (Kluwer Academic Publishers, Dordrecht, 2002) 
 

1 



denoising the very sharp seismic signals. These early attempts were developed and 
formalized by Grossmann, Meyer, and many others till the wavelet local analysis was 
made into a powerful mathematical tool, competing side by side with the Fourier non-
local analysis. Today, there is a whole universe of scientific literature dealing with the 
all-different aspects of wavelets. This field is developing so fast that even the very 
definition of wavelet that at the beginning seemed fairly settled, is today an uncertain 
ground that has lead some to authors to say that the precise definition of wavelet is a 
kind of scholastic question. Here, only the basic property of finitude of the wavelet is 
retained. 
  
2.1.  WAVELET LOCAL ANALYSIS VERSUS NON-LOCAL FOURIER 
        ANALYSIS 
 
In order to understand the conceptual and practical importance and gasp the deep 
significance of this new local analysis by wavelets it will useful to make a short 
comparison with the non-local Fourier analysis. 

The Fourier analysis must be considered non-local or global because its basic 
elements, its constituting bricks, are monochromatic harmonic plane waves, infinite 
both in space and time.  

The non-local or global character of the Fourier analysis can be easily understood 
with the following example.  
 

At the initial time t0 At the time t1  
 

Figure 3.1 – Digitalized images to Fourier analyze 
 
Suppose that it is necessary to record, line by line, the first image shown in Figure 3.1, 
for instance, in a CD. In order to simplify the problem, let us consider only the line 
indicated in the picture. The plot of the intensity of the picture along that line is also 
represented below in the same picture. In order to Fourier represent this variation in 
intensity it is necessary to find the amplitudes, frequencies and phases of the infinite 
monochromatic harmonic plane waves that sum up reproducing the initial function. This 
immensity of plane waves interferes negatively in all points of space except in those 
two regions where the interference is constructive.  

Let us now suppose that, for instance, the first ship moves to the right, while the 
other remains in the same position. This situation is represented in the second image of 
Figure 3.1. Next, we ask how this motion of the first ship is to be Fourier represented. 
In this type of analysis, both the first and the second ship are made of the same infinite 
harmonic plane waves. In these circumstances, a modification in the position of the first 
ship implies naturally a modification in the amplitude frequency and phase of all the 
waves, so that their interference is constructive now only in the new position. This 
means that, even though the two ships may seem separate entities, they are in fact, 
treated as a whole entity in this process of non-local Fourier analysis and reconstruction. 
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Hence, a modification in the position of one of the ships implies a simultaneous 
modification of the constituents of the other, no matter how distant they are from one 
another. This mathematical consequence of dealing with infinite harmonic plane waves, 
determines the very deep roots of the non-locality of the usual quantum mechanics. The 
non-local or global character of Fourier analysis has also serious technical drawbacks, 
namely when, as is the case, one wants to register video images. In general, as is very 
well known, from video image to video image there are only slight variations. 
Nevertheless, in this type of non-local or global analysis, a minor modification on one 
region of the image implies the necessity of analyzing and rebuilding the whole image.  

If, instead of the non-local Fourier analysis, one uses local wavelet analysis, the 
modification of the position of one ship as nothing to do with the other, if the two 
objects are sufficiently far one from another. In this case, the group of wavelets that 
sums up to recreate one object is completely independent from the wavelets 
corresponding to the reconstruction of the other ship. This is precisely the reason why 
this type of analysis is called local analysis by finite waves.  

The difference between the two types of analysis is shown graphically in Figure 3.2. 
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Figure 3.2 – Comparison between local wavelet analysis and Fourier non-local analysis 
 

Another important advantage of the local wavelet analysis is related to the fact that, in 
order to represent a given signal, one is free to choose different types of basic wavelets. 
In these circumstances, a wise choice of the basic wavelet can further increase the rate 
of compression and the quality of the reconstruction, or the denoising capability. 
 
 
2.2.  THE NEW UNCERTAINTY RELATIONS 
 
Analytically, the usual uncertainty relations are a mathematical consequence of the non-
local Fourier analysis [2]; if, instead of infinite harmonic plane waves, one uses the 
local wavelet analysis to represent a quantum particle, the form of uncertainty relations 
may consequently change [3].  
 
In order to make the derivation of the new uncertainty relations more comprehensible, it 
is convenient to do it step-by-step, in parallel and with the usual derivation. This 
process is shown in the following sketch, Figure 3.3 
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Figure 3.3 – Derivation of the uncertainty relations. 
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From the table, Figure 3.3, it is seen that the new uncertainty relations derived with the 
local wavelet analysis have the form 
     

 2
0

22

2
2

/ xhp
hx

∆+∆
=∆ . (2.1) 

 
The same analysis could, in principle, be done with other mother wavelets. The 

Gaussian Morlet wavelet [4] was chosen among the other possibilities because of its 
interesting properties: 
 
- From the mathematical point of view, it has a very simple form. Therefore, the 
necessary calculations can fully be carried out without approximations.  
 
- Another very interesting property of this wavelet comes from the fact that, when its 
size increases indefinitely, it transforms itself in the kernel of the Fourier transform. In 
this sense, this local analysis contains the non-local Fourier analysis as a particular case. 
When the size of the basic wavelet Dx0 is sufficient large, the new relation transforms 
itself into the old usual Heisenberg relations, which is a very satisfactory result 
 
- It allows a reasonable representation of fair localized particle with a well-defined 
velocity. 
  
- Written in terms of space and time, it is a solution of a Schrödinger non-linear master 
equation [5]. 
 

The plot of the uncertainty is shown in Figure 3.4. The new uncertainty relations are 
represented by the solid line for three finite values of the size of the basic wavelet. The 
usual Heisenberg uncertainty relations, which correspond to the case ∞→∆ 0x , are 
shown as a dashed line. 

 
x

px  
 

Figure 3.4 - Solid line: new uncertainty relation for three different finite values of size the basic wavelet. The 
dashed line represents the usual Heisenberg uncertainty relations. 
 
2.3. GENERALIZED MEASUREMENT SPACE 
 
The new, more general uncertainty relations were derived in a causal framework, 
assuming that the physical properties of a quantum system are observer independent, 
and, even more, that they exist even before the measurement. Naturally due to the 
unavoidable physical interaction during the measurement process, when the other 
conjugated observable is to be measured, the quantum system does not remain in the 
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same state. In last the instance, the precision of the measurement, for a non-prepared 
system, depends on the relative size between the measurement basic apparatus and the 
system upon which the measurement is being done. 

Until now, the most basic interacting quantum device is the photon. Nevertheless if 
the photon has an inner structure, as is assumed in the Broglie model, it will imply the 
ability to perform measurements beyond the photon limit. Since in the derivation of the 
new uncertainty relations, the quantum systems were assumed to be described by local 
finite wavelets, the measurement space resulting from those general relations must 
depend on the size of the basic wavelet used. As the width of the analyzing wavelet 
changes, the measurement scale also changes. This can be seen in the following plot 
Figure 3.4.  
 

  

∆ px

∆ x 

Figure 3.4 – Wavelet measurement space 
 
From this picture it is seen that, as the width of the basic wavelet 0x∆ changes, all the 
measurement space is scanned. This space is only limited by Heisenberg’s space. The 
smaller , the greater is the precision of the position measurement. That is: the 
smaller is the uncertainty , for any value of the error in the momentum. Given that 
the new relation contains the usual as a particular case, it implies that the measurement 
space available to the general uncertainty relations is the whole space, as shown in 
Figure 3.5.  
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Figure 3.5 – Measurement space available to the general uncertainty relation 
 
These results are rather satisfactory, because in this causal paradigm the quantum 
measurement process depends, in last instance, on a standard used. We are, in principle, 
free to choose the size of the mother wavelet 0x∆ more suitable for the measurement 
precision we want to attain. 
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3. BEYOND HEISENBERG’S MEASUREMENT SPACE 
 
The middle of the eighties saw the development of super-resolution microscopes. The 
first of this new type of microscopes was developed for electrons by Bennig and Roher 
[6], who received the Nobel Prize for the discovery. The principal characteristic of these 
microscopes is that their resolution goes far beyond those given by Abbe’s rule of half 
wavelength. Abbe derived his theoretical resolution rule based on the Rayleigh 
diffraction criteria for the separation of two circles in a far field. 

Super-resolution microscopes were also developed in 1984 by Pohl et al. [7] for the 
optical domain. Initially, these microscopes had a spatial resolution of l/20, ten years 
later [8] they attained resolutions of  l/50  or even better. 
There are many types of super-resolution optical microscopes, as can be seen in 
pertinent literature. In most straightforward of these microscopes the light emitted by 
the sample is simply collected by the sensing probe. 

In order to see if there are some very special experimental situations were the 
predicted errors of the two conjugated observables do not lie in Heisenberg’s 
measurement space, it is convenient to consider the well-known Heisenberg microscope 
in parallel with the super-resolution microscope optical microscope.  
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     Product of the two uncertainties 

 

                              hpx x =∆∆ hpx x 25
1

=∆∆  

 
 
From the table, one sees that there is a very significative difference of 1/25 in the 
products of the uncertainties related to the measurement of the two conjugated 
observables, position and momentum. For the common Fourier microscope, this product 
lies well within Heisenberg’s measurement error space hpx x ≥∆∆ . For the super-
resolution microscope, we have 25/hpx x =∆∆ , that lies outside hpx x <∆∆  
Heisenberg’s measurement space, and is therefore contained in the more general 
wavelet precision measurement space. 
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