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Introduction 

 

The development of the quantum paradigm in the first quarter of this century led 

physics to abandon causality. Until then physicists had believed that their rationality, 

a heritage of ancient Greek times, enabled them to understand Reality. They had be-

lieved that the models they had painfully created were mere approximations of a 

deeper Reality independent of them. They had believed that, with the progress of sci-

ence, these models would progressively become better and better. Finally, in a more 

advanced stage they would be very near to Reality. After the general acceptance of 

Bohr’s paradigm, the way of thinking that in the past had led to so many good results, 

was completely rejected. With the introduction of the new paradigm, physicists, fol-

lowing Bohr, would have reached the limit of their ability to understand Nature. 

Therefore causality had to be abandoned because it no longer fitted with the micro-

physical experimental and theoretical evidence. Heisenberg-Bohr indetermination re-

lations would be the limiting boundaries to our cognition capacity. 

 

The non-causal conception of the world that quantum mechanics proposes is very 

strange even to quantum physicists. For people not familiar with quantum mechanics 

it is even harder to accept a world without causality, where the concepts of space and 

time play a minor role. This fact did not discourage Bohr and his followers. They be-

lieved that the development of quantum mechanics would allow mankind to leave be-

hind the archaic concepts of space and time. These concepts were then showing their 

inadequacy to explain and predict phenomena at the atomic and molecular level. They 

would be mere crutches we use to translate language the phenomena physicists were 

dealing with into common. This was unavoidable because the great majority of people 

were not prepared for the huge jump this paradigm imposes. With the abandonment of 

causality proposed by quantum physics, mankind would have made an important step 

ahead. They would be able to overcome the fictitious barriers of space and time. They 

would achieve omnipresence, the exclusive attribute of divinity. 

 

Notwithstanding the appeal of this proposal, we can not easily understand how it was 

possible to give up causality. Throughout the history of man the possibility of acquir-

ing the attribute of omnipresence, and its by-products like telekinesis, teleportation 

and so on, have been seductive promises. What we have to know, right now, is if 
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mankind in the 20th century, with the appearance of quantum mechanics, has really 

acquired this capacity, as Bohr and his followers seemed to believe. 

 

This non-causal paradigm was formally introduced into quantum mechanics through 

non-local Fourier analysis. It was not therefore surprising that the non-local character 

of quantum mechanics was subsequently derived when its very foundations lie pre-

cisely in an intrinsically non-local formalism. 

 

In the present work we set out to accomplish three main objectives. The first is to pre-

sent the fundamental role played by non-local Fourier analysis played, at both a for-

mal and a conceptual level. The second is to present wavelet local analysis, a new 

formalism recently developed that restores causality in physics. The third is to present 

experimental evidence of actual violations of Heisenberg-Bohr uncertainty relations 

that are mathematically a direct consequence of Fourier non-local analysis. This new 

experimental evidence can be inserted in a causal framework, allowing us to achieve a 

more general mathematical formulation for uncertainty relations. 

 

 

Fourier non-local analysis  

 

When Fourier, during the period between 1807 and 1822, was studying heat conduc-

tion, he could not have suspected the fundamental role that the mathematical tech-

niques he was developing would play in the ontological and epistemological discus-

sions on the foundations of  20th century physics. 

 

Fourier thought that it would possible to represent any solution of a differential equa-

tion, in particular the heat conduction equation, by a sum (infinite or not) of some par-

ticular functions that we call sine and cosine.  

 

These functions are defined from minus infinity (-) to plus infinity (+) both in 

space and in time. This means that if we represent, for example, the function sin(x) in 

the below figure, in which argument x is either space or time, we obtain: 

 
Graphic of the sine function  

The figure shows only a very small portion of the function that continues to the left 

until x=- and to the right until x=+.  
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The function cosine is a similar function and its graphic representation is given 

in the figure below. 

 

 

 
Graphic of the cosine function  

 

These two functions are equal except for a slight change of phase of /2, meaning that 

the functions are separated by a quarter of a wavelength. One wavelength is the dis-

tance between two consecutive peaks. 

 

Let us consider the “squared wave” represented in the following figure:  

“Squared wave” 

 

 

The Fourier development of this function is given by: 
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This expression means that to reconstruct the function f(x) (the “squared wave”) it is 

necessary to sum sin functions infinitely. The more terms used the better the recon-

struction of f(x) will be. We will exemplify in the following figure by successive 

graphics the reconstruction of the function f(x) when the number of terms in the Fou-



Preprint: The final version appeared in Grazer Philosophische Studien, 56(1999)151 

 
4 

rier series increases. The cases where the number (n) of elementary waves (sin/(x)) 

used is n = 1, n = 2, n = 3, n = 4, n = 5, n = 10, n = 100, n = 1000, will be represented. 

 

It can be observed from the figure that when the number of summed waves is one 

hundred (n=100), a fair representation of a “squared wave” is achieved, and when the 

number of summed waves is one thousand (n=1000) we obtain an almost perfect 

“squared wave”. 

 

It is possible to conclude the following: Looking at the expression of Fourier non-

local synthesis it can be observed that there is a basic sinusoidal wave giving a first 

approximation of the function to reconstruct. It has a wavelength (defined, for exam-

ple, as the length between two successive peaks) identical to that of the function we 

want to represent. The amplitude of this first wave is 4/. The amplitude is the num-

ber that multiplies the function sin(x). The second wave summed has a wavelength of 

a third of the first, and amplitude of a third of it as well. The synthesis continues, 

summing other waves where the wavelength and the amplitude decrease proportional-

ly to successive odd numbers. To make easier for a reader unfamiliar with mathemati-
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cal language to understand the above, the next figure represents the first three waves 

used in non-local Fourier synthesis: 

 

  

 
The three first waves used in non-local Fourier synthesis 

 

The “squared wave” used is just an example. Obviously, such a wave cannot represent 

the information that we possess of a microphysical entity. However, this process of 

non-local Fourier synthesis can be extended to a broader set of functions, giving rise 

to what is called Fourier’s integral. In this case we replace the infinite sum of discrete 

waves by an infinite sum of infinitesimal waves. 

 

It is possible to use this new type of synthesis when dealing with non-periodic func-

tions, that is, when the function is only defined in a finite region of the domain (for 

example, in physical space or in time). This generalization of the Fourier’s non-local 

synthesis is very useful in physics because the quantum mechanical wave function , 

which represents all the information we may have about a microphysical entity, may 

have a limited domain of definition. This is the case when a microphysical particle 

cannot be detected except in a small region of space and time. A gaussian function, 

that is, a bell-shaped function, is one example of this case. Purely for interest, we 

show its mathematical expression: 
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In the previous expression A is the amplitude, x represents the argument, for example, 

space and time, and 2 is its variance related with its width at middle height. This 

function can be used to describe the distribution of the marks of students, the height of 

the members of a population or the information we have about the possibility of de-

tection of a microphysical particle in a certain region of space and time. 

 

The graphical representation of a gaussian function or gaussian distribution is: 
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A gaussian function  
To reconstruct this function using non-local Fourier analysis it is necessary to inte-

grate, that is, to sum an infinite number of sinusoidal functions (sines and cosines) the 

wavelengths and consequently frequencies of which must have a continuous rate of 

change. It is precisely here where Bohr gets the formal support to introduce the com-

plementarity principle that stands at the very foundations of quantum mechanics. 

 

 

The principle of complementarity and its ontological and epistemological conse-

quences 

 

At the Conference at lake Como in Italy in September 1927, and at the famous 5th 

Conference of Solvay during the fall of the same year, Bohr showed that he was deep-

ly acquainted with the epistemological problems posed by quantum formalism. It can 

be said without fear of inaccuracy that he was the only physicist able to foresee the 

need to “reconcile” the classical corpuscular and wave conceptions. However, the way 

he chose to “reconcile” these two classical conceptions was and still is a strange reso-

lution of the contradiction. The answer given by Bohr was to consider the plane har-

monic waves, that is, sines and cosines, as, so to speak, the “arche” of nowadays 

physics. However it is an “arche” of the phenomena not of the substance, that is, an 

“arche” of the information we can obtain about a microphysical entity which is a re-

sult of a complex interaction between the subject and the object. Furthermore, this 

“arche” exists only potentially. Indeed, it is absolutely necessary to emphasize that, in 

the spirit of Bohr’s interpretation, these waves, before the interaction with the observer, 

exist only potentially. Before the interaction with the observer there are no real enti-

ties, only a set of possibilities that the act of measurement may make real. It is exactly 

the non-local Fourier method that allows this interpretation. Indeed, as seen above, 

when we synthesize a function  representing the information possessed about a mi-

crophysical entity, we sum an infinite or finite number of sinusoidal functions. Every 

one of these functions has a particular wavelength and, therefore, a particular frequen-

cy. There is a simple relation between the wavelength () and frequency (). Their 

product is equal to the velocity of propagation (v) of the waves, that is: 

 

  v  

 

When the velocity of propagation of the waves is constant, there exists a one to one 

correspondence between the wavelength and the frequency. This is why sines and co-

sines are called in physics monochromatic plane waves or plane harmonic waves. 

They have a single wavelength and a single frequency. Thus, when we sum a certain 

number of these waves to synthesize a  wave a problem arises. It is not possible to 

say that this quantum entity has several frequencies, because this would imply that 

this quantum entity would simultaneously have several energies. In fact, as it is well 
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known, there is a fundamental relation between frequence and energy in quantum 

physics expressed in the famous and fundamental relation of Planck-Einstein: 

 

E h   

 

In this expression E represents energy, h is Planck’s constant and  is the frequency. 

Thus, different frequencies mean different energies, and this would imply that the 

quantum entity, being represented by several plane harmonic waves, would possess 

several energies simultaneously. This would be unacceptable because when a quan-

tum particle is detected it evidences a well-defined energy. In order to solve this prob-

lem Bohr introduced a postulate in quantum theory called the instantaneous reduction 

of the wave packet. This means that when we make a measurement only one frequen-

cy (energy) will show up. Every other potential plane harmonic waves that build the 

wave packet turn into nothing. Only one of the energies that the particle potentially 

possessed will become actual. Among the packet of plane harmonic waves necessary 

to synthesize the wave function  when we use Fourier’s non-local theory, only one 

of them has the possibility of being actually measured. Every one of the others is re-

duced to zero instantaneously. 

 

The principle of complementarity is, as we said, the touchstone of the interpretation of 

Bohr of non-local Fourier formalism when applied to quantum phenomena. Indeed, if 

we consider the gaussian distribution mentioned above, we can consider different dis-

tributions with different widths at half height. The width at half height is its main 

characteristic. 

 

 
Two gaussian functions with different widths at half height 

 

In the previous figure two gaussian distributions were represented for two different 

widths (=1 and =10). The width at half height is smaller in the first than in the sec-

ond. If the variable x of the function represents the position in space, the first case 

would represent a particle that can be detected in smaller region of the space then the 

particle represented by the gaussian at the right. To emphasize this point we can con-

sider two limiting cases. The first would be the case where the width at half height is 

zero, that is, a function equal to zero everywhere except in the center. This case can be 

represented by a special function called the Dirac delta () function. The second 

would be the case where the width is infinite, that is, a constant function infinitesimal-

ly small everywhere. The first situation would correspond to the case where the posi-

tion of the quantum entity would be unequivocally known before detection. Converse-

ly, the second situation would correspond to the case where the position of the quan-
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tum entity would be completely unknown before detection. In the latter case we could 

detect the quantum entity with equal probability in any position in space.  

 

In order to synthesize the first function in an acceptable way, non-local Fourier theory 

tells us that we need to integrate (to sum an infinite number of infinitesimal terms) 

over all frequencies or, which comes to the same thing, all energies. Thus, in this case 

we would know the position of the quantum particle with absolute accuracy, but we 

would know absolutely nothing about its energy. In the case of a free particle (not ex-

posed to any kind of field) the energy of the particle is its kinetic energy: 

 

E mv
1

2

2
. 

 

 

In this expression, E represents the energy of the particle, m its mass and v its veloci-

ty. Evidently, for particles with the same mass, correspond different momenta (mv) 

and, consequently, a different velocity (v) to different energies. This implies that we 

know the position of the particle with absolute accuracy but we know nothing about 

its momentum. 

 

The second situation discussed, where the wave function  has a very small value 

constant everywhere, represents the quantum entity by a single monochromatic plane 

wave or plane harmonic wave. This wave is mathematically represented by a sine or a 

cosine. A sine and a cosine have a well-defined wavelength and frequency. This is the 

reason that they are called in physics monochromatic plane waves or plane harmonic 

waves. Therefore, the particle would have a well-defined energy (E = h) and conse-

quently nothing is known about its position. 

 

In contemporary physics, it is customary to say that physicists are squeezed between 

the wave concept and the corpuscle concept. This is what is meant by the wave-

particle dualism. Indeed, from a formal standpoint, we use the wave concept as the 

basic concept. It should be remembered that, as said above, the “arche” of contempo-

rary physics are the plane harmonic waves. In fact, these have been the formal 

“bricks” with which quantum theory is built. 

 

The plane harmonic wave  is the simplest mathematical form for the wave function, 

with a single frequency, a single wavelength and a single period. Because plane har-

monic waves exist from minus infinity to plus infinity both in space and in time, we 

are induced to apart ourselves from the classical concept of a particle or material point 

with a well-defined position in space and in time. On the contrary, when we deal with 

a special function that is null everywhere except at a single point, we are dealing with 

something that we can easily associate with the classical concept of a material point, 

with a well-defined position both in space and in time. However, this is something 

completely different from an ordinary wave, and we know from non-local Fourier 

theory that we need to integrate over all the frequencies, that is, we must use in this 

infinite sum all plane harmonic waves to reconstruct this function . Therefore, it is 

hard to associate the information we possess on the quantum entity with the classical 

concept of wave. But, even for this case, for which we can predict, before the meas-

urement, with the greatest possible accuracy, the position of the particle, we know ab-
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solutely nothing about its energy and, consequently, its velocity. This fact implies 

that, even in this case, a quantum entity can not possess a real position and a real ve-

locity before the measurement. It is the measurement that makes actual one of these 

potentialities. This show how distant we are from the classical concept of particle for, 

which there is simultaneously well defined both position and velocity. This is due to 

the fact that, in quantum physics, the basic idea is the concept of wave and the notion 

of particle is a derived one. 

 

Within this formalism we must conclude that if we want to emphasize the corpuscular 

character of a quantum entity, by reducing the region of space where it can be detect-

ed, we distance ourselves from an wave conception of this quantum entity and vice-

versa. 

 

This is the very puzzling essence of the wave-particle dualism when we want to trans-

late it in classical terms. It is a mathematically direct consequence of non-local Fouri-

er theory where there is nothing except waves. 

 

 

 
Three gaussian functions and its Fourier transforms 

 

In order to understand what happens between these two limiting cases, we represent in 

the figure several gaussian functions  with different widths. In the left column three 

gaussian distributions with widths equal to 0.1, 1 and 10 respectively are represented. 

For each case it is shown in the same row the non-local Fourier analysis of these func-

tions, that is, the value and the weight of the frequencies we need to sum in order to 

reconstruct the initial function at the left in the same row. When we say that we sum 

frequencies, it should be understand it as a sum of plane harmonic waves. This is so 

because to each plane harmonic wave corresponds a different frequency. The non-

local Fourier analysis of the previous  functions gives the value and the weight of 

the different frequencies necessary to synthesize the initial function , shown at the 
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left in the same row. We call these second functions the Fourier transforms of the first 

functions. The transform of a gaussian function in ordinary space is another gaussian 

function in the so called, space of frequencies. 

  

We can conclude that the greater the width of the gaussian function in ordinary space, 

the smaller the width of the gaussian function in the space of the frequencies, and 

vice-versa. The Heisenberg-Bohr uncertainty principle is a direct consequence of this 

fact. 

 

Soon after Bohr became acquainted with Schrödinger’s work he clearly caught a 

glimpse of the way to solve the problems posed by atomic phenomena and theories. 

Schrödinger had previously shown that non-local Fourier formalism could be applied 

to solve the problems raised by atomic phenomena. Bohr was, from the very begin-

ning, well aware of these fundamental problems. In 1927 he began to write a paper 

that was published in Nature the next year [1]. In that article we can find the follow-

ing statement: (p. 581) 

 

“While energy and momentum are associated with the concept of parti-

cles, and hence can be characterized according to the classical point of 

view by definite space-time coordinates, the period of vibration and wave-

length refer to a plane harmonic wave train of unlimited extent in space 

and time.” 

 

Bohr shows in this statement that he knew from the outset the intricate relation that 

non-local Fourier formalism imposed between the concepts of wave and particle. The 

Heisenberg-Bohr uncertainty principle is, as already mentioned, a consequence of 

non-local Fourier formalism. We use this expression rather than Heisenberg uncer-

tainty principle because, although it was Heisenberg who first discovered it, it was 

Bohr who turned it into a meaningful statement linking it to its complementarity prin-

ciple, the touchstone of the interpretation of quantum formalism. In the case we have 

been discussing, the principle of complementarity means the existence of a comple-

mentarity relation between the position (x) and the momentum (mv). That is, the more 

precisely we want to know before a measurement the position of a quantum entity, the 

less we can predict its momentum. Moreover, and Bohr is very clear at this point, this 

complementarity relation is part of a more general and fundamental definition of the 

principle of complementarity. This new definition implies the existence of a comple-

mentarity relation between a space-time description and a causal description. Using 

kantian terminology we would specify that there exists a complementarity relation 

between the a priori forms of sensitivity and the a priori forms of understanding. The 

a priori forms of sensitivity are the concepts of space and time, and the category of 

causality constitutes, in the domain of science, the main a priori form of understand-

ing. We may quote, among many others, another part of Bohr’s paper mentioned 

above, where he is transparent in the defense of this position: (pp. 580-581) 

 

“On one hand, in attempting to trace the laws of time-spatial propaga-

tion of light according to the quantum postulate, we are confined to sta-

tistical considerations. On the other hand, the fulfillment of the claim of 

causality for the individual light processes, characterized by the quan-

tum of action [Planck’s constant h – our comment], entails a renuncia-



Preprint: The final version appeared in Grazer Philosophische Studien, 56(1999)151 

 
11 

tion as regards the space-time description. Of course, there can be no 

question, of a quite independent application of the ideas of space and 

time and of causality. The two views of the nature of light are rather to 

be considered as different attempts at an interpretation of experimental 

evidence in which the limitation of the classical concepts is expressed in 

complementary ways.” 

 

The way Bohr reached the principle of complementarity has been already studied by 

one of us in previous works [2][3]. There, the profound influence Høffding had over 

Bohr is defended. A similar position has been put forward by Jan Faye in several 

works [4][5][6]. Other authors, like Favrholdt [7][8][9][10][11], hold the opposite 

view point. For them, the genesis of the principle of complementarity would be an ex-

clusive work of Bohr, without any kind of influence external to the own quantum 

formalism. We cannot accept this position. The resemblance between the thoughts of 

both is too great to be a simple coincidence. An important question is not answered if 

we accept this position. Why did Bohr accept and support the idea that Quantum Me-

chanics was a complete theory? Why did he not accept that this formalism and the 

theory he built upon it would be only a good approximate description of real phenom-

ena allowing the possibility to go beyond in future? We think that this only becomes 

comprehensible if it is accepted that the interpretation of quantum formalism achieved 

by Bohr was in strong consonance with his long-standing and deeper convictions. 

Bohr recognized the compatibility between quantum formalism and his own former 

beliefs, which were linked to the main Danish philosophical (anti-hegelian) stream of 

thought: Poul Martin Møller, Søren Kierkegaard and Harald Høffding. The latter had 

been Bohr’s professor of philosophy, a friend of Bohr’s father and finally a friend of 

Bohr himself. We shall not go deeper into this point, which has been studied in other 

works, but we cannot resist quoting a fragment of Høffding’s book [12] La relativité 

philosophique that shows a close agreement between the two. Bohr read this book and 

made an approving comment on the Danish edition’s title. In this book Høffding 

speaks copiously about physics, one possible reason to attract Bohr’s attention. Here 

is the fragment: (pp. 197-199) 

 

“Continuity and discontinuity are correlatives that supplies each other. 

They designate different points of view and different operations; the his-

tory of sciences shows how both one and the other take the lead, but in 

such a way that the struggle between them starts afresh always. No one 

shed a more clarifying light upon them than Henri Poincaré when he says: 

This struggle will go on as long as there is science, as long as mankind 

thinks, because it is due to the result of the two irreconcilable needs of the 

human spirit from which that same spirit cannot strip itself unless it ceases 

to exist, the need to understand and we are not able to understand but that 

which is finite, as well as the need to see and we are not able to see except 

an extension of that which is infinite." 

 

The impossibility of simultaneously seeing and understanding, can be identified with 

the impossibility of obtaining simultaneously a space-time description and a causal 

description. Thus, the concept of complementarity as Bohr conceived it can be easily 

found in Høffding. This one thought he had found an irrational residue that human 
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thought would never be able to transcend and Bohr, following him, believed that in 

quantum physics he had also discovered an insurmountable irrational residue. 

 

Those authors who claim that Bohr was led to his principle of complementarity only 

by physical reasons alone, must explain also why he thought in extending it beyond 

physics. An article by L. Kay [13] is very revealing because she shows Bohr trying to 

extend his principle of complementarity to biology. A young physicist at the time, 

Max Delbrück left physics and embraced biology under the influence of Bohr. He 

wanted to find a principle of complementarity in biology. However, in this case there 

was no mathematical formalism. Consequently, Bohr never achieved a precise expres-

sion for this hypothetical principle. The best he could do was to enunciate it in a very 

broad and general way. It would be something like this: beyond a certain limit, if we 

want to know more of the secrets of life, then we need to destroy life itself. Kay em-

phasizes that Max Delbrück’s epistemological research program in biology failed dis-

astrously when in 1953 two researchers, Jim Watson and Francis Crick discovered the 

structure of DNA. This discovery, to a certain extent, reduces the study of life to 

chemistry and physics. This attempt from Bohr clearly proofs how he profoundly be-

lieved that his principle of complementarity ought to be applied to all phenomena. 

  

Bohr’s interpretation of quantum formalism which is plainly supported by a funda-

mentalist interpretation of non-local Fourier theory deeply influenced 20th century 

physics. This fact enable us to say that, in the domain of physics, we can name the 

20th century “Bohr’s century”, in the same way as we call the 17th century “Newton´s 

century”. 

 

Recently, new advances, both formal and empirical, have shed a new light on the very 

foundations of physics. We will try to report the way these new data have been pro-

gressively emerging at the end of the 20th century. To achieve this we will recall the 

resolution limit of optical systems. This limit is itself a consequence of non-local Fou-

rier theory. 

 

 

Theoretical limits for the resolution of optical systems 

 

Optical systems dedicated to amplifying images, like, for instance, the microscopes, 

have a fundamental theoretical limitation. At first sight this may seem paradoxical. 

Indeed, people with little knowledge of physics, believe that the capacity of a micro-

scope to amplify an image has no limits. However, essentially the way that leads to 

this conclusion is very simple: Let us consider an object that we want to amplify. Us-

ing a microscope we can enlarge the image to obtain an amplification of, for example, 

one hundred times. This can be easily achievable with an ordinary microscope. Next 

we use the amplified image and with an identical microscope have it augmented an-

other one hundred times. This second image corresponds to an overall amplification 

that is the product of the two amplifications, that is, ten thousand times. Following 

this procedure we could have any degree of amplification we would like. However, 

and unfortunately, it is not quite so! 

 

Every optical imaging system possesses two kinds of limit. One, the easiest, is the re-

sult of the natural deterioration of the image in successive amplifications. After a cer-
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tain number of them the image irremediably deteriorates due to the imperfection of 

the lenses and other natural causes that contribute to a general loss of image quality. 

The other was discovered by physicists in the last century. This second kind of limita-

tion they called resolution. This is a basic characteristic of any imaging system, set-

ting theoretical limits for its amplification power; it is much more fundamental, and is 

a consequence of the wave character of light. To understand this important concept let 

us see the functioning of one of the most common of optical systems: the photograph-

ic camera. 

 

In the following figure we can see a scheme of the pinhole camera that is the essence 

of the photographic camera. 

 

 

   

 

 

 

 

 

 

 

 

 

 

We can observe that the diameter of the hole defines the resolution of the final image. 

The smaller the entrance point the higher the resolution. Geometrically, if the pinhole 

were a mathematical point, every point of the object would produce a single point in 

the image. In practice, because the physical hole is never a mathematical point, each 

point of the object produces a circle in the image. This is what we can see in the figure 

above. But there is a lot more. When the dimensions of the point decrease, we begin 

to observe the phenomenon of diffraction, and the image points increase instead of 

diminishing.   

 

Abbe, a physicist of the last century, showed that the maximum theoretical resolution 

for these systems is about half the wavelength of the light used in the device. This ex-

plains the considerable investment currently being made to produce compact disks 

systems working with violet light. The wavelength of violet light is about half the 

wavelength of red light. This implies that the resolution of a reading system using vio-

let light is about double that of a reading system using red light. In practice this means 

a four-fold increase in capacity. This means that if on a red light CD we can store a 

two-hour movie, on a violet light CD we can store an eight-hour movie. 
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We can illustrate this fundamental point with the next figure, where we represent a 

screen with a vertical slit. Let us consider a parallel beam of light, of a certain wave-

length, impinging on the screen with the slit. At the target placed far behind the screen 

we observe the image of the slit. 

 

 

 

Due to the wave character of light the image of the slit, instead of being very sharp, 

changes into a blurring diffraction pattern with a central primary maximum and a se-

ries of secondary maxima to the right and to the left of the main one. In the picture 

only one secondary maximum was represented for each side. For sake of clarity the 

intensity distribution observed in the target is represented horizontally at the bottom 

of it. This diffraction pattern of a rectangular slit corresponds mathematically precise-

ly to the Fourier transform of the rectangular slit. 

 

Let us now consider the case of a screen with two rectangular slits sufficiently far 

from each other, as shown in the next figure. In this case we observe two different dif-

fraction patterns corresponding to each one of the slits with two primary maxima per-

fectly separated from each other. Once again it is possible to can calculate the final 

image as the overlapping of the Fourier transforms of the two slits each considered 

separately. 

 

 

 

 

We may now ask, what will happen if the distance between the two slits in the screen 

decreases? 

 

From what we have just said the answer is quite simple. What we will observe on the 

target is the overlapping of the two different diffraction patterns where the two main 

maxima merge into a single one. When the distance between the silts is lesser than a 

certain value the two maxima are no more distinguishable. This represents the resolu-

tion limit due to the wave nature of the light. The situation is represented in the fol-

lowing figure. 
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Abbe was able to show that this limit corresponds to about half a wavelength of the 

impinging light on to the screen. Thus, below this limit we can no longer distinguish 

the two slits in the final image. This is, has been said, a consequence of the wave 

character of light and is mathematically described by non-local Fourier formalism. 

 

Now we can understand why those theoretical results, with profound technological 

consequences, are a direct result of non-local Fourier formalism, and consequently 

profoundly connected to Bohr’s complementarity principle. 

 

 

Experimental violation of the maximum resolution limit for Fourier systems  

 

We have just concluded that the maximum theoretical resolution limit of half wave-

length for an optical system is deeply connected with the very foundations of quantum 

mechanics. Therefore, we could be led to admit that it is an essential feature of Na-

ture. In this sense we could never go beyond it. However, Nature is much more com-

plex than any human theory no matter however refined and complete it could seem. 

There are no complete definitive theories, even if some thinkers of the past and even 

of the present claim the contrary. Scientific theories are man made constructions re-

sulting from social and cultural environment where he is immersed. Theories are al-

ways conceived to deal with the experimental evidence we can access with the empir-

ical and theoretical instruments available at the time. In this context theories do not 

rule natural phenomena. They are always rough approximations that describe with 

more or less accuracy certain aspects of Nature.  

 

The history of science teaches us that this misunderstanding has been very common 

among the thinkers of the past and even among some of the present. Dominant theo-

ries lead to conclusions that seem completely correct and general. However, some 

marginal experiments, at first sight not connected to any theoretical structure, lead us 

to empirical results that not only violate the established theories but also go beyond 

them, opening new universes of possibilities.  

 

In the history of science in general and the history of physics in particular, there are 

many examples of practical apparatus used in everyday life which way of working 

was not clearly explained by any existing theories at the time. This is the case, for in-

stance, of the steam engine. The first worthwhile theoretical formulation only ap-

peared half a century after the invention of these engines. This is also the case of the 

microscopes not based on the non-local Fourier relations that are nowadays in com-

mon use in scientific and technological laboratories.  In the following we shall present 

this new evidence that seems to go against the established paradigm. 

 

 

A new generation of microscopes 

 

In the middle of the eighties IBM laboratories produced a new type of microscope 

with an experimental resolution largely better than Abbe’s half-wavelength maximum 
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theoretical limit. This was the scanning tunneling electron microscope developed by 

Binning and Roher [14], two researchers who won the Nobel Prize for the discovery. 

 

Shortly after, the principle of this microscope was extended to the optical domain. At 

the present moment there are many types of optical microscopes that do not work 

within the Fourier regime. The practical resolution of some of them is of about 1/1000 

of a wavelength, five hundred times better than the limit imposed by Abbe’s criterion 

based upon non-local Fourier formalism! 

 

In the next figure we represent schematically one type of this microscope in order to 

show how they work. The microscope chosen is the non-Fourier scanning optical mi-

croscope developed by Pohl and his group [15]. 

 

 

 

 

 

Basically this microscope has a sensor or light detector, a scanning system that con-

trols the position of the sensor, and a computer with a display device. 

 

The light detector is in general made of a very thin optical fiber with the tip much 

smaller than the diameter of a human hair. The light collected by the tip of the needle 

is directed to a large electronic detector that converts the light intensity into an electri-

cal pulse. In some cases, instead of the optical fiber, the sensor extremity can be just a 

simple very small solid state detector converting directly the light into an electric 

pulse. In any case the light that strikes the detector is converted into an electric pulse 

that feeds the computer. 

 

The scanning system, not shown in the figure, is commonly composed of a cantilever 

which arms are made of piezo-electric quartz crystal. These crystals, very common, 

for example, in modern cigarette lighters, have a very interesting property. When they 

are compressed produce an electric current. This is the reason why they are called pie-

zo-electric. It is this current that produces the spark in the lighter. These devices work 

reversibly, that is, when we apply an electric current to them they shrink or expand 

according to the field applied. The electrical field applied to the arms of the scanning 

device controls the position of the tip of the sensor allowing a complete scanning of 

the whole sample. 

 

The computer receives the electrical pulse from the sensor and, after a suitable pro-

cessing, a final amplified image of the sample appears on the display. This image is 

the result of the following process: The sample is illuminated and its points diffuse 

light in all directions. The tip of the sensor positioned over one point of the sample 

collects some of the diffused light, and transforms it into an electric pulse proportional 

to the light intensity. The light intensity captured depends on the distance between the 
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sensor tip and the surface of the sample, and also on the collecting area of the sensor 

tip. Thus, during the scanning the computer records the variation of light intensity in a 

scanning line. Scanning successive lines over the whole sample we finally obtain the 

desired amplified image. For example, if only one point of the sample diffuses light, 

in the image shown on the display one observes a continuous uniform surface with 

only one discontinuity. This discontinuity represents the enlarged image of that single 

point.  

 

The experimental resolution of the apparatus depends on the dimensions of the sensor 

tip, the accuracy of the scanning device (better for smaller steps), and the minimum 

distance between the sample and the sensor’s extremity (the smaller the better).  

 

We would like to emphasize that in these instruments, known as second-order instru-

ments, the final image is the product of an “intelligent” treatment of the image. The 

well-known CAT that produces 3D radiological images is an instrument of this type. 

The sensors collect the intensity of the X radiation diffused by the patient, and convert 

it into an electrical impulse. These impulses are fed to a computer, and after a relative-

ly complex treatment a 3D image of the patient appears in the display. 

 

By contrast, in first-order instruments, for example, an ordinary microscope or a mag-

nifying lens, both Fourier systems, the final image results from a simpler and more 

direct treatment of the information. 

 

 

Experimental violation of Heisenberg-Bohr inequality  

 

Every measurement is always the result of an interaction between the measuring appa-

ratus and the system we want to analyze. The interaction always produces a perturba-

tion in the system. Let us consider a physical system A, a microscopic particle for in-

stance, and suppose that we want to know its position and velocity. To accomplish 

this goal we need to interact, even minimally, with the system. This interaction modi-

fies the system, so its position and velocity change in an unpredictable way. The un-

certainties in the position and velocity of the small particle A are such that its product 

is bigger than or at least equal to a certain value. This minimum value is Planck’s con-

stant (h). In other words, after the interaction the particle moves in such a way that its 

final position cannot be known exactly. We can only say that the particle will be in a 

certain region of space, the dimension of which corresponds precisely to the uncer-

tainty in its position. The bigger this region, the greater the uncertainty in its position. 

The same happens with velocity because the interaction also changes it in an unpre-

dictable way. 

 

In order to show that Heisenberg-Bohr uncertainty relations are really violated in this 

new type of scanning optical microscope we must predict, before the interaction, 

what, after the interaction, will be the values of the uncertainties in the position and 

velocity of a microscopic particle A, and show that this product is less than Planck’s 

constant. 
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In order to facilitate the demonstration let us consider in parallel the cases of the usual 

Fourier microscope and the new non-Fourier microscope. In the following figure we 

show detection region of both microscopes. 

 

                  

 
                        Common Fourier Microscope        New Microscope 

 

 

As we can see in the figure, the photon moves horizontally and strikes (illuminates) 

the microscopic particle A. We want to predict the uncertainties in the position and in 

the momentum of that particle. We should recall that the momentum of a particle is 

the product of its mass and its velocity. When the photon strikes the microscopic par-

ticle transfers to it some of its momentum. After being diffused the photon may be 

caught by the microscope. The calculation for the uncertainty of the momentum of  

particle A after the interaction with the photon can be done in several ways. These can 

be found in any quantum mechanics textbook. Each author performs the calculation 

considering more or less factors but all them arrive at the same final expression for the 

uncertainty of the momentum: 

 

p
h

x  2


 

 

In the last expression, h is once again Planck’s constant and  is the associate wave-

length of the microparticle A. 

 

The value for this uncertainty is exactly the same for the new non-Fourier microscope.  

Before being captured by the microscope the photon behaves like a corpuscle in both 

cases. 

 

The uncertainty in the position for the usual Fourier microscope is calculated using 

Abbe’s maximum resolution criterion which is, as we already know, half a wave-

length: 

x 


2
. 

 

We should recall that this result is due to diffraction and is therefore a consequence of 

the wave character of light. 

 

This experiment is called in all quantum mechanics textbooks Heisenberg’s micro-

scope, and constitutes a paradigmatic example of Bohr’s complementarity principle. 

First, during the photon-microparticle interaction, the photon behaves like a corpuscle. 

After the interaction, when the photon enters the microscope, it behaves like a wave 

x
A

x
A
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according to Fourier optics and gives rise to a diffracted spot that represents the image 

of the particle A. Therefore, in this experiment, we have a paradigmatic demonstration 

of the complementary character of the photon: in some situations it behaves like a par-

ticle and in other situations it behaves like a wave. 

 

The product of both uncertainties leads to 

 

 x p hx  , 

 

which is the mathematical expression of the Heisenberg-Bohr uncertainty relations. 

The equality corresponds to the ideal situation referred above. In real situations the 

accuracy of measurements will always be worse, and the equality turns into an ine-

quality. 

 

Let us now see what the value of the uncertainty in the position will be for the new 

non-Fourier microscope. In this case, for the optical scanning microscope represented 

in the above figure, we do not have any theoretical prediction for the existence of a 

limit. However, Pohl and his group reached experimental resolutions of approximate-

ly 

 

x
h


50

. 

 

Therefore, the product of both uncertainties xpx leads, in this case, to 

 

 x p hx 
1

25
. 

 

This corresponds to a violation of the Heisenberg-Bohr relations by a very significant 

factor of 1/25. 

 

We should mention that in this proof of the experimental violation of the Heisenberg-

Bohr relations, we have used a scanning optical microscope with a relatively low ex-

perimental resolution. It is possible, at the present moment, to achieve resolutions of 

about 1/1000. We chose a lower resolution microscope in order to make the demon-

stration simpler. With this microscope the reasoning that leads to the proof of the vio-

lation of the Heisenberg-Bohr relations is, in fact, very similar to the usual one.  

 

The above demonstration, presented to the scientific community before, [17] seems 

able to resist any argument. However, it must be submitted to other experimental 

tests. In fact, what we are discussing here is not a minor point, but a fundamental 

change in an entire vision of the world, a change of paradigm. As we know, it will be 

not a single experiment that will induce the scientific community to renounce to such 

a so well-established paradigm. The standard quantum paradigm has been dominant 

since the twenties. Thus, in order to go beyond it, it is necessary to gather evidence 

from several experimental and theoretical sources that may lead to the same result. 

 

To pursue this goal, we must call attention to a new mathematical development, which 

is the wavelet local analysis [18].  
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Wavelet local analysis 

 

Using non-local Fourier analysis, as seen before, we were able to reconstruct a large 

class of functions with unlimited accuracy. However, this analysis is a non-local one, 

that is, its fundamental “bricks” are unlimited waves, either in space or in time. We 

called attention to this point at the beginning of this text. When we want to represent 

the motion of a particle it is necessary to change the phases and amplitudes of the 

fundamental plane harmonic waves in such a way that they only interfere construc-

tively in the region of space corresponding to the next position of the particle. The 

non-local interpretation comes from the way we mathematically represent quantum 

entities. Let us consider two correlated particles, as shown in the figure. When we 

change the position of one of them the position of the other changes simultaneously, 

because for correlated particles the infinite waves that potentially describe them are 

precisely the same. This is the reason why they are sometimes said to be non-

separable entities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

If instead Fourier non-local analysis we use wavelet local analysis, we can easily rep-

resent a particle mathematically as well. In this case we can reconstruct a function 

representing a particle without gathering information contained in all space and time. 

Thus, when a particle moves we only need to change locally the relative position of 

the wavelets involved. 

 

The following figure represents schematically how the two approaches work. 

 

 

f(x)

x

   Non-local 
Fourier waves

         Local
      Wavelets
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Both analyses allows us to reconstruct the function f(x) representing the particle. 

However, while non-local Fourier analysis uses mathematical entities existing in 

whole space and whole time, wavelet analysis uses mathematical entities existing only 

locally. 

 

Wavelet analysis emerged to solve certain technological problems. This is the case, 

very common nowadays, of compression of information that we want to save or 

transmit. For example, if we want to record a movie in digital form it is possible that 

more than one disk will be required. Using wavelet analysis compression algorithms 

the same information can be stored on only one disk. This situation has been seen be-

fore in the past. Instruments developed to solve particular technological problems 

have shown themselves very useful in theoretical domains. 

 

Since the establishment of Bohr’s paradigm, in 1927, the scientific community tacitly 

accepted the rejection of the concepts of space and time as fundamental concepts. To 

tell the truth, we must admit that the majority of physicists use quantum mechanics as 

a mere tool without being aware of the epistemological implicated problems. Even if 

in the bohrian quantum mechanics we cannot ascribe any physical reality to the mi-

crophysical entities before the measurement, the majority of physicists, even those 

who use quantum mechanics as a mere working tool, continue to believe in the physi-

cal reality of protons, atoms and so. After Bohr, the concepts of space and time, are 

archaic fictitious concepts. We just use them because they allow us to express our-

selves in classical terms but they are not adequate to describe Nature at a more fun-

damental level. That is, after Bohr, even space and time are no longer real entities. In 

fact, in some sense, with quantum mechanics man would acquire the divine attribute 

of omnipresence. Then, he would be able to act here, in space and time, and, simulta-

neously, everyplace and in all time. Non-local Fourier analysis is the basic formal ar-

gument leading them to this belief. 

 

The foundations of Bohr’s paradigm are shaking at present as a consequence of two 

causes: first, the conflict with experimental evidence, and second, the appearance of a 

local alternative formalism that enables us to describe equally the whole quantum 

phenomenology in causal terms. Using wavelet local analysis, any physical system 

can be reconstructed in terms of finite wavelets both in space and in time. We now 

have the ability to represent a physical system confining ourselves to a limited portion 

of space and time. The usual description is now a particular consequence correspond-

ing to the case when the width of the basic wavelet is increased as much as we want. 

The main difference is that now this is not a requirement, but rather something that we 

can accept or reject according to our needs. 

 

In these terms, local wavelet analysis enables us to recover the lost causality. Howev-

er, this new causality is much richer than the classical one. It can be extended as much 

as we like including, as a particular case, the formalism that, until now, has supported 

the successful non-causal model. 

 

We can mention a particular case where it has been possible to derive a more general 

set of uncertainty relations than those of Heisenberg-Bohr. Using as a starting point 
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local wavelet analysis instead of non-local Fourier analysis and following step by step 

Bohr’s initial reasoning we are able to derive an expression for the uncertainty rela-

tions that contains the usual Heisenberg-Bohr relations as a particular case. These 

new, more general local relations have the following mathematical expression: [16] 

 

 

 




x
h

px

2

2 2



, 

 

 

 

In this expression the constant  represents a parameter related to the width of the 

fundamental wavelets. When the width of the wavelet tends towards infinity  tends to 

zero and we achieve the Heisenberg-Bohr relations. In the following figure these new 

relations are plotted together with the usual Heisenberg-Bohr relations.  

 

 

 

 
 

 

 

In the figure solid lines represent the new relations for three different values of the 

parameter . The dotted line represents the usual Heisenberg-Bohr relations. We can 

conclude that only in a small region, near the origin, there is a sharp difference be-

tween the different lines. This difference enables us to conceive experimental situa-

tions where the predictions of both expressions are different. In the remaining domain, 

the most common case, the different lines coincide, that is, they predict exactly the 

same experimental results. 

 

 

Conclusion 

 

It has been shown, even succinctly, that the bohrian non-causal paradigm may be sub-

stituted by a different one that restores causality to microphysics. This new paradigm, 

still under formal development, relies mainly on the local wavelet analysis and in a 

non-linear approach. In this context, the limits imposed by the new uncertainty rela-

tions derived within the new framework are not obstructive barriers for our rational 

understanding of Reality. They no more represent an irrational residue for our 

thought. They are mere sporadic empiric obstacles that can, in principle, be overcome 

by the progress of science. The known experimental evidence points towards a return 

 x

 px
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to a new causality even at the microphysical level. It should be emphasize that it is 

extremely important to search for other experimental situations showing the limita-

tions and the incapacity of Heisenberg-Bohr uncertainty relations to describe certain 

aspects of the quantum phenomenology. The restoration of a new causality in micro-

physics needs a sound experimental basis together with a well-structured mathemati-

cal formulation. 
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