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Abstract: It is shown that the tunneling effect can, mathematically, be described by the 
tunneling operator. Since the tunneling operator is invertible, it is possible to specify the 
form of the wave inside the barrier and from it arrive at the incident wave in the 
nontunneling region. An easy example of this is presented. On the other hand, this operator 
allows us to build a no-moving localized structure inside a tunneling barrier at any distance, 
as far as one wish, independent of time. This seems to imply an instantaneous transit time 
inside the barrier or, in other words, an infinite velocity. The overall process is here applied 
to a photonic localized structure in the so-called classical frustrated total reflection where 
all space besides the crystal can be taken as the tunneling barrier. The process, based on 
wavelet analysis, avoids the problems raised by Fourier nonlocal and nontemporal 
paradigm. It overcomes the difficult, for not saying impossible, problem of the definition of 
the “true” velocity of a wave, other than the one of the harmonic plane wave.  
 
 
Key words: fundamental quantum physics, tunneling, tunneling operator, superluminal 
velocities, optics, wavelet local analysis. 
 
 
1. INTRODUCTION 
 
The tunneling effect has been studied for many years but until now no one, as far as I know, 
has ever tried to find an operator to describe it mathematically. The advantage of an 
operator for describing this effect results from the fact that it allows us to pass from the 
knowledge of the form of the wave in one region to expression of the wave in the other 
region. A most simple example of it is shown. By stipulating the analytic form of the wave 
in the tunneling region, we directly arrive at the wave in the “normal” region. Furthermore, 
the tunneling operator allows us to study in a very easy and intuitive way the complex 
problem of the superluminal transit times. 
 
Recently many experiments [1] have been done showing, without any margin of doubts, 
that the pulses, which cross the tunneling barrier, arrive before the ones going through the 
air. Everybody agrees with the results of the experiments. The question is if they imply a 
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superluminal velocity or not? Since all calculations are done under Fourier nonlocal and 
nontemporal paradigm, [2] is very difficult, for not saying impossible, to define the velocity 
of a wave. Only in the case of an infinite, both in time and in space, harmonic plane wave 
the problem offers no difficulty. In this nonlocal paradigm, only the infinite harmonic plane 
wave has a “true” velocity and frequency. All other finite waves are no more than 
combinations of these infinite waves. Therefore, any of these finite waves has, in principle, 
as many velocities and frequencies as the number of harmonic plane waves that make it. 
Since these harmonic plane waves are spread over the whole space and time, his hard to 
tell, in this paradigm, which is the velocity of a finite wave [3]. Since the components that 
make the pulse fill all space and time, practically anything is possible. The weirdest things 
are then possible like, for instance, retroactions in time. That is, a pulse may arrive at a 
destination prior being produced by the source! Situations of this kind are not new in 
physics. We have just to recall the description and prediction, in geophysics, of 
earthquakes. The use of Fourier analysis implies, in certain cases, that the seismic pulses 
arrive before the actual earthquake took place. Other times the precursors started before the 
formation of the Earth itself! Since geophysicists are people facing everyday practical 
concrete problems, they need to have their feet placed on solid ground, so they discard, as a 
nuisance, these aberrant situations resulting from the use of Fourier global paradigm. It was 
precisely to avoid these irregular situations, that the geophysicist, Jean Morlet, created, in 
the eighties, the concept of finite wave from which wavelet local analysis sprout [4]. 
 
Here we follow a more general approach[2], inspired in the local analysis, for the tunneling 
process. This method allows us to overcome the above conceptual and practical difficulties 
raised by the usual nonlocal and nontemporal Fourier paradigm which, in this case, is 
overcome by a local paradigm. 
 
 
2. THE TUNNELIN OPERATOR 
 
 The tunneling effect means the passage from a “normal” region of space to other 
characterized by a potential with energy greater than the energy of the incident particle. 
This action also can, mathematically, be described by the following operation 
 
 , (1) )()()( tkxfTtxkiftkxf NT

Tunneling
N ωωω −=−′⎯⎯⎯ →⎯−

 
with T standing for the tunneling operator, and f being a generic solution of the wave 
equation. 
 
This means that the passage from a “normal” region to a tunneling one is to be described by 
changing, in the solution of the wave equation, the classical velocity by an imaginary 
velocity, or equivalently: k by ik’. The passage from a tunneling region to a “normal” one is 
done under the same tunneling operator 
 
 . (1´) )()''()( txkifTtxkftxkif TN

Tunneling
T ωωω −′=−⎯⎯⎯ →⎯−′
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It will be shown that, in certain conditions, the time does not appear in the mathematical 
expression describing the no-moving localized structure. This means that the no-moving 
structure can be localized at any point inside the barrier independently of time. Accepting 
this conclusion by its straight value, forgetting that the mathematical formulas we use are 
only wrought, better or worse, approximations for describing Reality, it would imply an 
instantaneous time transmission. 
 
 
3. TUNNELING WAVES WITH A CONSTANT INTENSITY 
 
Before showing, with a concrete example, that the tunneling operator has indeed the above 
properties we shall apply it to a most simple example. The result is, as we shall see, in a 
certain sense, the one to be expected. By applying the tunneling operator to the wave, 
solution to the classical wave equation, of the form 
 
 , (2) )'()( txikTtkx ee ωω −− ⎯→⎯
 
we, obtain a wave, which intensity inside the tunneling region, is constant all along the xx 
axis 
 
 
  (3) ttxiktxik

TTT eCeCeCI ωωωψψ 22)'(*)'(* || −−−− ===
 
 
The incident wave in the normal region 
 
  (4) )()( tkx

NI eAtkxf ωωψ −=−=
 
is a crescent wave from , with a maximum at point zero, and decreasing in 
time. 
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Fig.1 – Plot of the incident wave  
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For the reflected wave, the case is symmetrical, since the function starts decreasing from 
the zero origin to minus infinity, . Summing up, everything happens as if the 
boundary between the two regions behaved like a mirror giving origin to a virtual reflected 
wave, as indicated in Fig.2. 

∞−⎯→⎯to0

 
 

- ¥ 0 ¥
x

1

Intensity

 
 

Fig.2 – Incident and virtual reflected wave 
 

Since we are dealing, in practice, with a decreasing function its derivative must be negative. 
In this condition, taking in account the above considerations, the total wave in the normal 
region is to be written 
 
 ( ) txkkx

N eeBeA ωψ −−+= || , (5) 
 
and in the tunneling zone 
 
 . (6) tikx

T eeC ωψ −=
 
By imposing the condition of continuity of the function in all domain, we have at the 
boundary x=0 
 
 ),0('),0('and),,0(),0( tttt TNTN ψψψψ == , (7) 
giving 
 

  (8) 
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that is 
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with , and 22 |||| AB =
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The plot of the intensities of the incident and tunnel wave intensity, at a very short time 
near zero, is shown in Fig.3 
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Fig.3 – Plot of the incident and tunnel wave intensity, at a very short time near zero 
 
This result, as we have said, ought to be expected. Since a wave of constant amplitude, a 
plane wave, incident on an infinite tunneling barrier gives rise, inside it, to an evanescent 
wave the inverse operation is also true. An evanescent wave in the normal region gives 
origin to a wave of constant intensity (3) in the tunneling region. 
 
 
4. THE TUNNELING OPERATOR T IN THE CASE  
  OF CLASSICAL TOTAL FRUSTRATED REFLECTION 
 
These calculations can be found in any good textbook of optics [5], nevertheless for the 
sake of clarity some steps will be shown. Consider Fig.4 showing two optical mediums 
with refractive indexes n1 and n2, such that n1>n2, and a beam of light with an incident 
angle 1θ . Furthermore, for simplicity reasons, we assume that the second medium is the air, 
therefore we have . 12 ≈n
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Fig.4 – Refraction of light 
 

In the region 2 the wave vector can be written 
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 zx ekekk rrr
22222 sincos θθ += . (11’) 

 
The problem now is to express this function in terms of the angle of incidence 1θ . From 
Snell refraction law and taking in consideration that we are interested in the tunneling 
situation, it is necessary to impose the total reflection condition. Therefore, after some 
trivial calculations we arrive at 
 
 zxk

k ekeikk rrr
111

2
22 sin)1sin( 2

1

2
2

2
1 θθ +−= . (11) 

 
This expression indicates that the component of the vector 2k

r
 along the penetration 

direction xx has the generic form 
 
 2

1

2
2

2
1 )1sin(' 1

2
2 −= θ

k
kkiki  (12) 

with 
 
 2

1

2
2

2
1 )1sin(' 1

2
2 −= θ

k
kkk . (13) 

 
This clearly shows that the passage from a “normal” region to other under tunneling 
conditions is indeed described by the tunneling operator T such that 
 
 ' . (14) kik TunnelingT ⎯⎯⎯⎯ →⎯ =

 
The same conclusion could also have been be reached if instead of a classical calculation 
we had done a quantum one for the case of penetration of a potential barrier [6] when the 
energy of the incident particle is less than the energy of the barrier. 
 
 
5. A NO-MOVING LOCALIZED STRUCTURE INSIDE A TUNNELING BARRIER 
 
Probably there must happen to be many processes for obtaining a no-moving localized 
structure inside a tunneling barrier. Nevertheless, we shall refer here only the one that uses 
a wave with amplitude of the type 
 
 . (15) txkitxktxkiTtxk eeeee ωωωω )(2)('))('())(( 222222 llll −−−−−−− =⎯→⎯
 
In the case under consideration, see Fig.4, we have for the wave vector 
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or remembering that 
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and Snell law, the wave vector can be written 
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under such conditions the wave, solution of the wave equation, in the two regions has the 
form 
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These expressions indicate that the zz components are equal. This result should be expected 
since along that direction there is no discontinuity. The expressions (19) can also be written 
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In order to fix the values of the constants it is necessary to impose the customary continuity 
boundary conditions 
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These calculations leading to 
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with 
 
 . (24) 22 |||| AB =
 
In order to introduce a localized no-moving structure inside the barrier it is necessary to 
find the right form for the parameterε . In such conditions, it is convenient to have for the 
amplitude of the incident wave 
   

 2

2

2

2 )())((
α

εω
α

εω +−+−−

=
tkxtxk

ee
il

 (25) 
 
this shows that we need to have 
 
 ik εε +−= l . (26) 
 
The tunneling operator applied to (25) gives 
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with 
  
 tik εε +−= ' . (28) 
 
Developing (27) we got 
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The value of tε  must be such as to preserve the localized structure 
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From (19) it can be seen that for the amplitude of the reflected wave we have 
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with 
 rk εε −= l . (32) 
 
Writing the three equalities (26), (32) and (28) 
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 ir k εε −= l2 , (33) 
 
and  
 it ikk εε +−−= l)'( . (34) 
 
It is not convenient to make ir εε = , because it would imply 0=ε , thus conducing to the 
loss of the localized structure. 
 
A possible choice results from making 
 
 0=tε  (35) 
 
leading to 
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For this case, the function (29) in the tunneling region assumes the form 
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In the case of the normal region, we have from (28) the incident amplitude 
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and for the reflected 
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Finally, looking at (19), (23) and (38) we are allowed to write for the wave in the tunneling 
region 
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giving for the intensity 
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Rescaling A such that 
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formula (42) becomes 
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which maximum  
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along the xx axis, is centered at the point l=x . 
 
These facts, clearly show that starting from an incident wave of the form, see (19) and (43), 
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it is possible to obtain (42) a gaussian structure localized at a distance  from the origin. l
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Since this parameter  is as large as one wish, this means that it is actually possible to 
place a localized structure, in practically no time, at any point we like. Incidentally, because 

l
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the position of the localized structure does not depend on time, the theoretical ideal 
transmission is, in this approach, instantaneous.  
 
In order to make the plot of the intensity distribution in the two regions it is convenient to 
calculate the total intensity in the normal region. From the form of the incident and 
reflected waves, see (19) and (22) we can write 
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which, after some calculations, give 
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An approximate plot of the intensity along the xx axis, at a time t=0, is shown in Fig.5. 

0 { x

Intensity

l
a

m
r

o
N

n
o

i
g

e
R Tunneling Region

 

 
 

 
Fig.5 – Approximate representation of the intensity distribution in the two regions for the time t=0. 

 
 
6 – Conclusion 
 
These theoretical results seem to indicate that in tunneling conditions the usual relativistic 
velocity limit c≤υ  breaks down allowing practically instantaneous motion. The problem 
now is to find out if these results are more than mere theoretical conclusions and have 
indeed any real physical correspondence. 
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