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Conventionalism implied that physical geometry must be fixed by an arbi-
trary choice among equivalent alternatives. In the last half-century, this view
has retreated before arguments that allegedly equivalent geometries are not at
all equivalent on decisive empirical and methodological grounds.1 Yet such
arguments were familiar to, and even proposed by, the conventionalists them-
selves. Poincaré, Schlick, and Reichenbach—to take just three prominent
examples—aimed not to deny that one could rationally choose among physi-
cally possible alternative geometries, but to articulate an epistemological theory
of the origins of geometrical postulates. According to this theory, the empiri-
cal application of geometry depends on principles that are not themselves
empirical, principles which were characterized as stipulations. But this view
certainly allowed that some stipulations were better than others for the analy-
sis of natural phenomena. Thus Reichenbach, Schlick, and Carnap could main-
tain that Einstein’s general theory of relativity had revealed the arbitrary element
in physical geometry, while at the same time demonstrating the superiority of
non-Euclidean geometry.

A more recent2 challenge to conventionalism is that the very idea of a geo-
metrical stipulation does not even make sense in the context of general relativ-
ity, which relates geometrical structure to the distribution of matter. On
Friedman’s view, conventionalism presupposes the nineteenth-century view of
geometry as a fixed and uniform background against which the laws of phys-
ics are framed. But according to general relativity, physical geometry varies
with material circumstances, and so cannot be settled in advance by conven-
tion. Thus geometry can no longer be interpreted as part of an a priori back-
ground for physics, settled by an initial choice of a theoretical language.
Friedman’s assessment brings out two conflicting aims behind the convention-

NOÛS 36:2~2002! 169–200

© 2002 Blackwell Publishing Inc., 350 Main Street, Malden, MA 02148, USA,
and 108 Cowley Road, Oxford OX4 1JF, UK.

169



alism of the logical positivists: on the one hand, to understand the a priori foun-
dations of science to be not synthetic, but analytic—their analyticity arising
from their dependence on the definitions of fundamental concepts; on the other
hand, to understand general relativity as an insight into the empirical nature
of spacetime geometry.

However, Friedman’s analysis overlooks a theme of conventionalism that
is not incompatible with general relativity, but on the contrary, is indispens-
able to our understanding of how spacetime geometry has become an empiri-
cal science. In their reaction against the Kantian and empiricist accounts of
the foundations of geometry, the conventionalist tradition of Poincaré and the
positivists saw correctly that the postulates of physical geometry are neither
uniquely determined by the form of outer intuition, nor inferred by induction
from experience. The postulates of physical geometry do not express factual
claims at all, but have an inescapablyinterpretive character: they connect
abstract geometry to physical space by assigning physical meanings to geomet-
rical concepts.

This is the insight that the positivists attempted to capture through the
notions of “coordinative definition,” “correspondence rule,” and the like. It
seemed clear to them that this insight requires us to view alternative theories
of physical geometry as no more than equivalent linguistic frameworks, and
to view the definitions that connect the frameworks with experience as arbi-
trary choices, justified by pragmatic a posteriori considerations. The assimila-
tion of the choice of geometry to the choice of linguistic framework invited
the now-familiar challenges from holism and empiricism: if those fundamen-
tal principles are contingent upon, and revisable in the face of, empirical knowl-
edge, in what interesting sense could they possibly be analytic truths? If the
choice of physical geometry is clear on empirical grounds, in what interesting
sense could it be conventional? For Poincaré and the logical positivists, fail-
ure to acknowledge the constitutive role of definitions in physical geometry
was the source of naive empiricism about the subject; that the “definitional”
character of the postulates implies conventionalism seemed obvious to them.
The implication has also seemed obvious to their critics, who, in rejecting con-
ventionalism, have seen no need to address the conventionalists’ concern with
definitions or to offer an alternative account of their origin and status.

I will argue that the conventionalists’ focus on the role of definitions in the
foundations of geometry contains an important insight. However, my purpose
is not to defend conventionalism, but to understand that insight from a com-
pletely different perspective. That the constitutive principles of physical geom-
etry are somehow constitutive of meaning seems to distinguish them from
ordinary empirical claims or physical hypotheses, but it need not mean that
they are fixed by convention. I will argue that they are, instead, discovered
by a process of conceptual analysis. The main task of this paper is to charac-
terize this process of conceptual analysis, and to exhibit the role that it has
played in the development of theories of space and time.
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Of course, the positivists saw a crucial role for thedestructiveanalysis of
ill-defined concepts—as in Einstein’s exemplary critiques of the Newtonian con-
cepts of space and time. What they failed to perceive was the positive role of
conceptual analysis in the construction of concepts, believing that this was ade-
quately captured by their notion of a stipulation. As we will see, however, new
foundations for physical geometry have emerged, not from arbitrary new coor-
dinations between geometry and physics, but from novel analyses of what is
implicit in established physical principles. By seeing how such analyses have
worked in the most decisive historical cases, we can understand something that
eluded both conventionalism and traditional empiricism: how principles that
are in some sense definitional could nonetheless arise directly from empirical
arguments, and how theories of space and time that arise from those defini-
tions are genuinely empirical theories. We will also gain a clearer perspective
on the relationship between spacetime theories and the philosophical concerns
of logical positivism.

1. Poincaré and the Logical Positivists on Space, Spacetime,
and General Relativity.

According to Friedman~1999c!, the positivists’ difficulties with conventional-
ism arose from taking Poincaré’s doctrine out of its original scientific and
philosophical context: Poincaré’s geometric conventionalism was plausible in
the context of classical physics, and on the basis of his theory of the synthetic
a priori. It is well known that Poincaré, while rejecting Kant’s views of space
and geometry, held to the view that arithmetic has an irreducible basis in
temporal intuition; the principle of mathematical induction has no justifica-
tion save an appeal to our intuition of the iterability of temporal processes.
What is noteworthy in Friedman’s account is an analysis of the role that this
view of intuition plays in Poincaré’s account of space, and its importance to
his conventionalism about spatial geometry. The very notion of space, Poincaré
pointed out, is an idealization derived from our sense of the free mobility of
our own bodies. Therefore the “group of rigid motions,” identified by Helm-
holtz and Lie as the foundation of geometries of constant curvature, is an
idealization of the primitive experience that acquaints us with the properties
of space in the first place. As such, this group is the necessary and sufficient
foundation of geometry as an empirical science. But the idealization involved
in passing from our own local motions to the group of motions, which is the
necessary foundation for our conception of space as globally homogeneous,
makes crucial use of the form of temporal intuition: our conception of the
large-scale structure of space derives from the presupposition that our local
displacements are infinitely iterable, a presupposition whose sole basis is our
temporal intuition. And the science of synthetic geometry is just an abstrac-
tion from these displacements, as classical geometrical constructions are based
on the rigid motions of an idealized compass and straightedge.
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Since the principles underlying geometrical construction are just these pro-
cedures derived from the “ancestral experience” of local free mobility, and ide-
alized as indefinitely iterable, they are necessarily bound to the geometries of
uniform curvature, in which the principle of free mobility holds. It follows that
only the geometries of constant curvature can be properly regarded as syn-
thetic, for only in those geometries is constructive proof possible. The much
larger class of Riemannian geometries of variable curvature must be regarded
as analytic, since no “classical” constructive procedure can yield their proposi-
tions. Poincaré’s account of the intuitive foundations of geometry thus differs
from Kant’s in two crucial respects: on the one hand, Poincaré has recog-
nized the existence, and mathematical legitimacy, of infinitely many geom-
etries that are not constrained by the form of intuition, while granting that
intuition constrains which of these geometries may claim to constitute syn-
thetic knowledge; on the other hand, Poincaré has found that the constructive
procedures licensed by intuition license, in turn, a more general class of geom-
etries than Kant would have admitted, i.e., all the geometries of constant
curvature.

According to Friedman, the difference between geometries of constant cur-
vature and general Riemannian geometries is essential for assessing con-
ventionalism. On the empiricist view of Helmholtz, which was Poincaré’s
starting-point, the kind of experience that convinces us that space is
Euclidean—the outcomes of measurement based on the displacements of rigid
bodies and the paths of light rays—could equally convince us that space has
a non-Euclidean geometry of constant curvature, just in case rigid bodies and
light rays behave in ways compatible with such a geometry. But Poincaré
placed the exact sciences in a hierarchy of “conditions of possibility.” The phys-
ics of rigid bodies could not lead one to give up Euclidean geometry, because
that physics is possible only within a framework provided by some geometry,
which therefore must be presupposed before any physical laws can be devel-
oped. Similarly, no geometry can be known unless a general theory of magni-
tude is assumed, and no theory of magnitude can be known unless the
fundamental principles of arithmetic are assumed. Thus no result in physics
can be a compelling reason to revise geometry. And since the legitimate candi-
dates for physical geometry—the geometries of constant curvature, which alone
are properly synthetic—are equivalent from a mathematical point of view, we
can choose any one of these, provided that we adapt our physics to the choice.
Therefore the choice of a geometry can only be a matter of convention, and
Euclidean geometry is the simplest possible choice.

This interpretation of Poincaré’s position explains why the logical positiv-
ists’ attempts to apply it to the interpretation of general relativity would end
in confusion. As we have seen, the conventions intended by Poincaré fix the
entire ~homogeneous! structure of space, and thereby provide an “a priori”
framework for the formulation of physical laws. In general relativity, no such
convention is possible, as the geometry of spacetime is everywhere dependent
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on the distribution of matter, and therefore can’t be specified in advance of
the laws of physics; in this respect general relativity realizes the vision of Rie-
mann in direct contrast to that of Poincaré, and the positivists’ efforts to main-
tain its compatibility with both views could not have succeeded.

It should be noted, however, that the appropriateness of the positivists’
appeals to Poincaré depends on how general relativity is understood. From
our standpoint, the positivists’ understanding of it rested on some fundamen-
tal errors. In particular, general relativity is not, as the positivists thought, a
theory of the “general relativity of motion,” but a theory of the structure of
spacetime; as such, it no more satisfies positivistic strictures against “unobserv-
able entities,” or “absolute” distinctions among states of motion, than did
special relativity or even Newtonian mechanics. This understanding was encour-
aged, however, by Einstein himself, and the same may be said of the positiv-
ists’ account of the arbitrariness of geometry. For Einstein had identified the
objective empirical basis of geometry as the determination of “space-time
coincidences,” or “verifications of...meetings of the material points of our
measuring instruments with other material points.”~Einstein 1916, p. 117!.
And this implied that all geometrical structures that agree on these coinci-
dences are equivalent, and that a choice among them is an arbitrary stipula-
tion ~an implication that Schlick called “the geometrical relativity of space,”
cf. 1917, chapter 3!. Such a view is not obviously untenable, regarded merely
as a philosophicalexplicationof the concept “spatiotemporal measurement”;
if the legitimate meaning of that concept is exhausted by Einstein’s analysis,
then the theory of the geometrical structure of spacetime has to be regarded
as imposed by a conventional choice, motivated by the search for the sim-
plest possible laws of physics.

On the logical positivists’ interpretation of general relativity as “relativiz-
ing” space, time and motion, the analogy between their version of convention-
alism and Poincaré’s is not so implausible. It fits neatly with their belief that
hypotheses about the states of motion of bodies—e.g., the Copernican and
Ptolemaic hypotheses—are on a par with geometrical conventions, and distin-
guished from one another only by their relative simplicity; for example, if the
centrifugal force in a rotating system is equivalent to a particular gravita-
tional field in a resting system, then we have a conventional choice about
which bodies are rotating, and can choose the simplest hypothesis. More par-
ticularly, it fits with their conventionalistic account of spacetime curvature in
general relativity: applying what they took to be the lesson of Einstein’s equiv-
alence principle, they regarded curved spacetime as equivalent to flat space-
time with a gravitational field, which renders the choice between the two
hypotheses a matter of convention. These examples are not unreasonably
regarded as parallel to those of Poincaré, where the choice is between, say,
non-Euclidean spatial geometry and Euclidean geometry along with an addi-
tional force-field. The choice is in one case between a homogeneous non-
Euclidean geometry and a homogeneous force-field, in the other case between
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a variable geometry and a variable force-field. In all such cases, the compet-
ing hypotheses were regarded as merely different languages for expressing,
with varying degrees of convenience or simplicity, the same physical situa-
tion. The positivists’ main criticism of Poincaré was only that he had a nar-
row conception of simplicity, which would always single out Euclidean
geometry over all others; if we apply the criterion to the total system of
geometry and physics, we may find that non-Euclidean geometry is simpler
~cf. Carnap 1966, pp. 161–162!, as we find with general relativity.

The foregoing leads to an important qualification of Friedman’s account.
We can see now that some version of Poincaré’s view could be made compat-
ible with general relativity, at least as the logical positivists understood the
theory, in spite of the passage from homogeneous to inhomogeneous geom-
etry. To do so is to recast conventionalism to reflect the passage from space
to spacetime. Poincaré’s conventionalism about geometry is essentially bound
to the context of three-dimensional space, because the a priori constructive prin-
ciples of geometry are just those connected with our spatial intuition, and, as
we saw, these restrict us to geometries of constant curvature. But Poincaré was
also a conventionalist about the laws of mechanics: that bodies free of force
move uniformly in straight lines, and that force is proportional to mass times
acceleration, were for him mere definitions rather than factual claims. From
here to a conventionalist view of inhomogeneous geometry there are only two
steps. The first is to recognize that the laws of motion, and in particular the
principle of inertia, serve as constructive principles for spacetime geometry;
the inertial motions identified by the laws are represented by the geodesics of
the spacetime structure. This means that the synthetic~in Poincaré’s sense!
geometries of spacetime will include those whose geodesics correspond to some
set of inertial trajectories identified by some possible physical theory. The geo-
desics of Newtonian spacetime, to use a familiar example, are identified with
the trajectories of particles not subject to gravitational or other forces, while
those of general-relativistic spacetimes are the trajectories of freely-falling par-
ticles. The Newtonian inertial trajectories have no relative accelerations, and
so correspond to the geodesics of a flat spacetime; the latter do typically have
relative accelerations that vary with the local distribution of matter, and so cor-
respond to the geodesics of a spacetime of variable curvature.

But those same relative accelerations are interpreted, in the Newtonian
theory, as caused by the gravitational field, and therefore as deviations from
geodesic motion. Thus this seemingly innocuous reasoning leads immediately
to the second step: to assert that whether we understand free-fall trajectories
as accelerated by gravitational force, or as inertial trajectories, is simply a mat-
ter of convention. That is, some physical trajectories must be arbitrarilystipu-
lated to be the inertial ones, and force correspondingly defined by deviation
from such trajectories. The statement “Falling bodies travel on geodesics of
spacetime” is therefore not an empirical claim, but has the stipulative charac-
ter of a definition; adopting it permits us to make empirical claims about the
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curvature of spacetime that would otherwise be meaningless. One need not
agree with this view to accept it as a reasonable analogue to Poincaré’s: accord-
ing to both we have an a priori framework in which we can formulate an equiv-
alence class of physically possible geometries~in space, the geometries of
constant curvature; in spacetime, the Riemannian geometries that agree on
“spacetime coincidences”!, and any further determination of geometry depends
on a conventional choice about how the laws of physics are to be framed, and
which physical trajectories are to represent the straight lines of space or space-
time. The logical positivists did not necessarily articulate this viewpoint clearly,
especially since they themselves frequently appealed to examples concerning
spatial curvature, or the effects of gravitational fields on spatial lengths, whereas
the fundamental issues in general relativity are the curvature of spacetime, and
the effects of gravity on spacetime geodesics. With a clear focus on these issues,
their assimilation of general relativity to conventionalism turns out to be, at
least, coherent.

It should be clear now, however, how much the coherence of this assimila-
tion depends on the positivists’ particular interpretation of general relativity.
By the same token, the more modern interpretation of general relativity places
the conventionalism of the positivists in a clearer light. If that version of con-
ventionalism does make sense, it does so at some cost: on the standard mod-
ern interpretation, in which general relativity describes the “real” curvature of
spacetime and its connections with matter and energy, the positivists’ view
of geometry would appear to make it difficult to describe the physical content
of the theory, or to explain why the theory of spacetime curvature should have
been preferred over its predecessors. For one could not say that Newton or
Minkowski was wrong to attribute a certain spatiotemporal structure to “the
absolute world”—since that structure is a matter of arbitrary choice—but only
that they were wrong to think of that structure as “absolute” rather than as a
useful convention. The theory that geometry is arbitrary is, on this view, objec-
tively better than its predecessor; the theory that spacetime is curved is merely
more convenient. Overcoming this philosophical limitation, if it is one, does
not by itself motivate the theory that~e.g.! gravitation and inertia are aspects
of the same physical field, that spacetime is therefore curved in the presence
of matter, and that therefore certain phenomena enable us to measure the space-
time curvature. That any particular phenomena are taken to be indicative of
curvature, or of any other geometrical property, is precisely what must be set-
tled by convention. In effect, the distinctive physical content of the theory, as
opposed to that of its predecessors, is precisely its conventional part. And this
is a significant disanalogy with Poincaré’s conventionalism. For Poincaré, the
synthetic a priori principles that define the equivalence class of physical geom-
etries are themselves physical principles which impose, at least, constant cur-
vature on space. In the positivists’ interpretation of general relativity, the
analogous equivalence class is defined by the general theory of Riemannian
manifolds, which then serves as a mathematical metatheory within which any
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physical theory of spacetime geometry might be formulated, but whose basic
principles contain no physical claims. But if we understand general relativity
as a theory, not of relativity and covariance, but of the relation between space-
time curvature and mass-distribution, it is difficult to square with convention-
alism. In short, it was not unreasonable of the positivists to maintain Poincaré’s
conventionalism in the face of general relativity; it would be unreasonable only
to think that Einstein’s theory, as a theory of spacetime geometry, is true.

If the only justification for any particular choice of the constitutive princi-
ples of physical geometry is the role they play in the total system of physical
laws, and the extent to which this total system accords with our experience,
then the a priori status of those principles is either questionable, or of little
interest. This outcome seems to have been unsatisfactory at least to Reichen-
bach ~1957!, who argued that coordinative definitions may be motivated by
something more than a posteriori convenience. His requirement that a metri-
cal coordinative definition must stipulate the absence of universal forces is, in
effect, an argument that what Poincaré would call “empirically equivalent”
alternative geometries may be inequivalent on empirically-motivated method-
ological grounds, and that non-Euclidean geometry is superior to a Euclidean
geometry conjoined with the hypothesis of a universal force. Whatever the
defects of Reichenbach’s discussion,3 it does attempt to portray the transition
from Newton’s physics to Einstein’s as an empirically-motivated change in con-
stitutive physical principles—as a change in the “relativized a priori” founda-
tions of geometry.4 But the account of those empirical motivations is obscured
by the broadly conventionalistic setting in which they are presented, accord-
ing to which objective empirical reasoning about geometry is only possible
within a framework established by arbitrary definitions~1957, pp. 36–37!.
Moreover, Reichenbach’s requirement offers a negative principle for rejecting
proposed metrical coordinations, rather than a positive account of the origins
of or physical motivations for any particular one. Thus, despite its admixture
of anti-conventionalist elements, Reichenbach’s view reinforces the convention-
alist interpretation of general relativity: that the theory reveals the arbitrary
element in physical geometry, and that only holistic considerations of simplic-
ity can distinguish among geometrical conventions.

It is helpful to view this entire development in a broader historical perspec-
tive. Conventionalism aimed to correct the error of Kant’s theory of the syn-
thetic a priori, which lay in supposing that genuine propositions concerning the
world of experience could have the apodeictic force of logic. If the postulates
of physics and geometry have a certainty beyond that of ordinary empirical gen-
eralizations, it is because they aren’t genuine propositions, but definitions. But
Kant’s theory also aimed to correct a traditional error, that of supposing that
the postulates of geometry have some extralogical content, yet are purely “intel-
lectual” truths. Whatever non-logical content is possessed by such postulates
is prescribed by the forms of sensible intuition. Without defending Kant’s intu-
itionism against later advances in logic and the rigorization of mathematics, we
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can see its merits relative to earlier views: on the one hand, it recognizes that,
at least up to Kant’s time, the use of intuition in mathematical reasoning was
pervasive but not acknowledged; on the other hand, it recognizes that the con-
cepts of mathematics were “productive” in a way that the concepts of tradi-
tional metaphysics had never been, precisely because the former are constructed
in accord with the forms of spatial and temporal intuition, and not merely
“invented” by the arbitrary assignment of meaning to words. Kant’s theory
thus provides an explanation—for whatever it’s worth—of why the principles
of geometry should seem to force themselves on us with something like the
certainty of logic, while yet having some definite empirical content. By con-
trast, conventionalism understands this certainty as the certainty of analytic
truth—the principles are just the rules that are definitive of a given linguistic
framework—but can’t address their empirical content except as something fixed
by an arbitrary designation, or a coordinative definition in the most literal sense,
that identifies some phenomenon as the referent of a concept. For Poincaré’s
conventionalism, this question of content doesn’t arise. If the subject matter
of geometry is the group of rigid spatial displacements, then we may have to
make conventional choices about which homogeneous geometry to use, and
precisely which bodies are rigid, but the empirical content of geometrical claims
in general is fixed, as is the structure of space up to its measure of curvature.
But if the subject matter of physical geometry is the “meetings of the mate-
rial points of our measuring instruments with other material points,” then prac-
tically all of its content is open to arbitrary decision: except for coincidences
with my own worldline, all of my judgments about such coincidences will
require some theoretical decisions to be made on the grounds of simplicity and
convenience.

Thus, it is the need for stipulations about the very content of physical
geometry that separates the logical positivists’ conventionalism from Poincaré’s.
This outcome is ironic, not merely because of the positivists’ identification
with Poincaré, but, more important, because of the enormous emphasis they
placed on Einstein’s revolution as a radical conceptual change, and on new
and better definitions of geometrical concepts as characteristic of that change.
Carnap, for example, surely thought of these as examples of the sort of “change
in the language” that “constitutes a radical alteration, sometimes a revolu-
tion,” as distinct from “a mere change in or addition of, a truth value ascribed
to an indeterminate statement” within a language~1963, p. 921!. This distinc-
tion is generally assumed to have been discredited by Quine, but it has a
prima facie claim of relevance to the history of 20th-century physics. On what
is at least a plausible reading, special relativity was founded on defining the
velocity of light as a fundamental invariant, and on defining simultaneity by
light-signalling; general relativity was founded on defining the geodesics of
spacetime as the paths of falling bodies; at least until we begin to suspect the
notion of analyticity in general, it would seem as if the acceptance of such
definitions is essential to the acceptance of the theories, so that denying or
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changing them would amount to creating an alternative conceptual frame-
work. What is the sense of denying, then, that “The trajectories of freely-
falling bodies are the geodesics of spacetime” is an analytic truth of the
linguistic framework of general relativity? The serious answer to this question
has to do with the difficulty about content. If such defining principles are
arbitrary stipulations that can’t be independently motivated—if their physical
content can’t be independently specified and judged—then such a presump-
tive analytic truth—by contrast with “Bodies free of all Newtonian forces
follow spacetime geodesics”—amounts in practice to nothing more than the
claim that general relativity is, on the whole, a more useful conceptual scheme
than Newtonian mechanics.

Of course, the logical positivists did attempt to justify Einstein’s conven-
tions on philosophical grounds. Reichenbach’s proscription of universal forces
was one such an attempt; others took their lead from Einstein’s own argu-
ments, and typically pointed to the “epistemological” inadequacy of the New-
tonian definitions, e.g., of simultaneity or absolute motion, and their failure to
provide the sort of “verifications” described by Einstein’s accounts of simulta-
neity and of “spacetime coincidences.” As we have seen, however, such argu-
ments are, at best, destructive critiques of the Newtonian framework rather than
positive motivations; at worst, they are confused, since general relativity, prop-
erly understood, doesn’t really satisfy such general epistemological strictures
either. At the same time, Schlick and Reichenbach, at least, argued that the
philosophical insights of Einstein’s theory depended on specific theoretical
developments in physics.5 This kind of justification would seem to be incom-
patible with the first kind: surely Einstein’s theory could not have evolved out
of a purely epistemological critique of earlier theories,and be contingent on
the fate of particular scientific hypotheses such as “Mach’s principle.” Nei-
ther sort of justification can be reconciled with the view that physical geom-
etry is founded on arbitrary stipulations.

2. Conventions, Definitions, and Conceptual Analysis.

Obviously the logical positivists left the understanding of physical geometry,
and the nature and function of its a priori principles, in a very unsatisfactory
state. They had good reasons to believe that Einstein’s revolutionary concep-
tions of space and time were developed with the help of a philosophical analy-
sis of some kind or another; that the theories were, at the same time, founded
on purely empirical principles from electrodynamics and gravitation; and that
in both theories, as in physical geometry generally, definitions of fundamental
concepts played crucial constitutive roles. Against Quine, they might have
argued that all three beliefs reflected Einstein’s characterization of his own sci-
entific practice—an argument that would deserve at least the attention of a pro-
fessed epistemological naturalist. But their account of the definitions as arbitrary
stipulations, and their attendant failure to analyse the origins or motivations
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of those definitions, makes the philosophical connections among the three ideas
difficult to see. By the same token, the intimate relations among them would
appear obvious if the origins of the fundamental definitions could be ratio-
nally explained. The most effective refutation of conventionalism would show
that we can understand those definitions through their philosophical and phys-
ical motivations, instead of treating them as conventions.

That understanding begins with recalling that concepts may come to be
defined, not only by stipulations about meaning, but by conceptual analysis.
This distinction may not appear immediately to be promising, if we think of
conceptual analysis just as analysis of “what is contained in” a given concept.
That is precisely the sort of analysis that, according to Kant, could never pro-
vide the foundation for an empirical science; from a more modern perspec-
tive, of course, analytic judgments in Kant’s sense seem to be empirical claims
about the typical uses of words. A more promising notion of definition by con-
ceptual analysis is based not on the question, “what do we typically mean by
X?”, but rather on the question, “what conception of X is implicit in our estab-
lished empirical judgments and practices?” And even this may be difficult to
see in a constructive role. In the philosophy of space and time, such analyses
have typically been seen as destructive, reducing space, time, and motion to
“nothing but” their supposed phenomenal basis, as in the “relativism” of~e.g.!
Berkeley, Leibniz and Mach. To Einstein and the logical positivists, Einstein’s
discussions of simultaneity, rotation, and spatio-temporal measurement were
analyses of just this sort, motivated by some form of verificationism: motion
is “nothing but” relative motion; measurements are “nothing but” verifica-
tions of “spacetime coincidences”. To the extent that it is construed in this
reductionist manner, such an analysis typically is taken to establish, not an
objective foundation for geometrical measurement, but the lack of any such
foundation—or, in Reichenbach’s words, “the need for a coordinative defini-
tion.” This is why, on the view of the history of theories of space and time
that has been common since Einstein, the progress from Newton to special to
general relativity consists in a gradual “relativization” of what had been seen
as objective or absolute, ending with a theory in which space and time have
lost “the last remnant of physical objectivity”~cf. Einstein 1916, p. 117!.

As we have seen, however, that sort of analysis yields an empiricist meta-
perspective on spacetime theories rather than a physical motivation for any par-
ticular theory. Even if it is the right perspective, it can’t be said to capture or
to reconstruct the motivations for the theory of spacetime curvature, whose
foundation must in that case be a convention. A constructive conceptual analy-
sis would show that an established set of empirical judgments implicitly con-
tains a constructive principle for physical geometry, one that only needs to be
raised to an appropriate level of precision and generality. A clear example was
provided by Poincaré himself, in his explication of “the notion of space.” The
essential idea originated with Helmholtz’s analysis of what we mean by “spa-
tial relations”: he considered how, among all the changes that we can observe,
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certain changes can be identified as spatial displacements or changes of spa-
tial relation. This is in some sense a demand for a definition, but it is not to
be answered by an arbitrary stipulation, or by a verificationistic reduction of
spatial determinations to some more elementary empirical basis. Rather, the
analysis recognizes a distinguished type of phenomenon that we judge to be
characteristically spatial, and demands a precise formulation of the principle
that is latent in those judgments. The answer is that spatial displacements are
those that can be effected and cancelled by the motion of the observer; in other
words, they are defined by the manner in which they can be done, undone,
and combined. And it is these actions, sufficiently idealized, that invite inter-
pretation as the characteristic operations of a group. It was by this analysis
that Poincaré arrived at his group-theoretic conception of space.

The empiricist motivation of this analysis, and of the resulting definition,
is evident; it is of a piece with another famous analysis by Helmholtz, concern-
ing the question whether we can “imagine” a non-Euclidean space:

By the much misused expression “to imagine,” or “to be able to think of how some-
thing happens,” I understand that one could depict the series of sense-impressions
which one would have if such a thing happened in an individual case. I do not
see how one could understand anything else by it without abandoning the whole
sense of the expression.~1884, p. 8!

Both are classic examples of the analysis of “the empirical content” of a
notion previously muddied by intuitive or metaphysical associations, and both
were recalled by the logical positivists as landmarks in the development of an
empiricist view of geometry. Yet they have to be distinguished from ordinary
empirical arguments. It is in some sense an empirical fact that the group of
displacements can be distinguished; but that the rigid displacements have the
structure of a group is not an empirical claim in the ordinary sense. Rather,
we would not recognize as spatial displacements any changes that did not
conform to that structure. At the same time, this principle is not an arbitrary
designation of the phenomenal referent of an abstract mathematical concept.
It is, rather, an argument that the mathematical concept captures precisely and
formally what is contained, vaguely and informally, in our pre-systematic
notion of a spatial change and our pre-systematic judgments of the spatial
relations of things. In other words, it is not an empirical claim because it is
an interpretation of our empirical judgments; it is not conventional because
the interpretation arises, not from a stipulation, but from a conceptual analysis.

From the foregoing we can see why such analyses need not be empirically
empty, but can have the most far-reaching implications for empirical science.
Helmholtz’s definition of “to imagine” does not merely propose an interpreta-
tion of the word on which we might meaningfully claim to imagine a curved
space; rather, it uncovers the interpretation that is implicit in our claim that
we can imagine Euclidean space, and reveals that claim to be of much wider
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application than we had previously appreciated. The Helmholtz-Poincaré defi-
nition of spatial displacement, similarly, does not merely invent a general con-
ception that can be applied to any space of constant curvature. Rather, it reveals
that the conception underlying our knowledge of Euclidean space is too gen-
eral to single out Euclidean space from the other spaces of constant curva-
ture. Where Kant had held that our notion of space is bound up with Euclid’s
axioms, since these state the constructive procedures on which our entire con-
ception of space is based, Helmholtz and Poincaré showed that those construc-
tive procedures are more general than that, and that “our notion of space”—at
least, the notion implicit in our empirical judgments about space—is corre-
spondingly general. And thus both analyses helped to make the difference
between the discovery of non-Euclidean geometry, and the discovery that
“space” might be non-Euclidean. Moreover, conceptual analyses of just this
sort, as we will see, have been essential to the most revolutionary develop-
ments in the theory of physical geometry.

At the same time we can see, from a different perspective, why a concep-
tual analysis like Poincaré’s would lead to a form of conventionalism, and we
can see the limits of that form of conventionalism. The concept of space that
emerges from Poincaré’s analysis is not defined by the arbitrary association
of certain observed displacements with geometrical concepts, in the manner
of a coordinative definition, and so it is clearly not a matter of convention—
although Poincaré acknowledges the possibility of exchanging it for some
more convenient concept; the concepts arrived at by analysis are not assumed
to be permanent. But it follows from Poincaré’s analysis that the geometry of
space, so defined, is indeterminate: the geometries compatible with the defini-
tion, those of constant curvature, form an equivalence class of mutually inter-
translatable structures. Therefore the means of distinguishing among them
must come from outside of geometry, i.e., from considerations that are not
implicit in the notion of space, but that involve physical hypotheses that take
the form of coordinative definitions: that light travels in a straight line, for
example, can be an empirical claim only if light rays can be compared with
straight lines. For Poincaré, this is the beginning of a regress that can only
end in a stipulation. Unlike the definition of a spatial displacement, such a
coordinative definition requires a choice among several equivalent alterna-
tives, some of which may turn out to be more convenient than others, but
none of which has a special claim to represent “what is implicit in our notion
of straight line.”

From this we could conclude that conventionalism is, in an important sense,
incidentalto Poincaré’s analysis of geometry. The analysis reveals the founda-
tion of geometry in a “disguised” or implicit definition. But having this founda-
tion does not make geometry an uninterpreted structure. For the definition itself
constitutes an interpretation of a specific type of phenomenon as instantiating
a specific mathematical structure. For the positivists, the structure determined
by a set of implicit definitions requires a convention to fix its empirical con-
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tent, but in Poincaré’s analysis of geometry, that content is already expressed
in the definition of spatial displacement; convention plays a role only because
that content, as it turns out, admits a class of equivalent geometrical realizations.

It is instructive to compare this analysis with that of Riemann, in particu-
lar with Riemann’s emphasis on the approximate character of the principle of
free mobility. According to Riemann, if the physical principle underlying homo-
geneous geometry is only an approximation, that geometry itself is only an
approximation to an actual geometry that may well be inhomogeneous at very
large or small scales. On small scales, especially, the inexact principle of the
rigid body must yield to a more exact, and more fundamental, principle of the
interactions that constitute rigid bodies in the first place. It follows that, if a
degree of global spatial structure is implicit in the principle of the rigid body,
implicit in the deeper principle may be a local structure that varies over space;
it also means that the degree of arbitrariness inherent in the former—and there-
fore the occasion for conventionalism—may not exist in the latter. For both
Riemann and Poincaré, then, analysis of the assumptions involved in measure-
ment leads to adefinition of spatial relations that associates them with physi-
cal processes, and in neither case is the definition therefore arbitrary. The
arbitrariness arises from Poincaré’s assumption that the concept of space is
explicatedexhaustivelyby the group of rigid motions, and that the latter pro-
vides theonly basis for a truly synthetic geometry; on these assumptions, no
investigation of the sort proposed by Riemann, into measure-relations “in the
small,” could possibly yield a legitimate constructive procedure for geometry.
From Riemann’s point of view, however, this must appear naive: rather than
standing before physics as~in this restricted sense! an a priori framework,
Poincaré’s conception of space ties geometry to a particularly simplistic phys-
ical principle, just because of the latter’s privileged role in the genesis of our
geometrical ideas, instead of recognizing that subtler physical principles might
yield subtler principles of measurement and correspondingly more complex
geometries. And, from the same point of view, even Helmholtz’s attitude would
seem comparatively sophisticated. Helmholtz also believed that free mobility
was both the original and the only possible basis for geometry, but forestalled
conventionalism by insisting that mechanics could decide among the geom-
etries of constant curvature; he thus recognized at least one part of Riemann’s
view, that the notion of rigid body is not privileged over the rest of physics.
For Poincaré, its privileged status is what defines our notion of space.

This last remark is especially important. The only plausible defence of
Poincaré’s narrow conception is that the physical principles invoked by Rie-
mann and Helmholtz are not proper to the theory of space, but involve extrin-
sic factors; in particular, asdynamicalprinciples, they essentially involvetime;
therefore the principle of free mobility is privileged over them, as far as
geometry is concerned, precisely insofar as it is a purely spatial principle. But
if this argument excuses Poincaré, it also reveals the deeper insight behind
the empiricism of Riemann and Helmholtz: that the geometry of space is not
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independent of the principles that connect space with time—in modern lan-
guage, thatspacetime is more fundamental than space. Indeed, for an under-
standing of Poincaré’s conventionalism in historical perspective, the separation
of space from spacetime is perhaps more important than the distinction between
homogeneous and inhomogeneous geometry. In particular, that an analysis of
geometrical postulates as “disguised definitions” should automatically lead to
conventionalism is an aspect of space as opposed to spacetime: Poincaré’s
hierarchy of sciences is possible just to the extent that geometry is defined to
be spatial geometry, and that the concept of space is completely explicated
independently of any dynamical principles. In that case the latter are open to
conventional choice, and certainly cannot play any constitutive role for the
spatial geometry against which they are framed. For the geometry of space-
time, however, those principles are precisely the constitutive principles. The
truth obscured behind an aforementioned remark of Poincaré’s, that inhomo-
geneous Riemannian geometries are not properly synthetic, is that a purely
spatial principle such as that of free mobility is unlikely to provide a construc-
tive basis for an inhomogeneous geometry; the appropriate principle would
likely be a dynamical, i.e., a spatio-temporal, principle, like the microphysical
principles of causal connection envisaged by Riemann, or general relativity’s
identification of gravitational free-fall with inertial motion. The familiar his-
torical example of inhomogeneousspatial geometry is Einstein’s prediction
of spatial curvature near the sun, as corroborated by the bending of starlight;
but the prediction follows from the theory of non-uniformspacetimegeom-
etry, in which light-propagation plays a crucial constitutive role.

3. Conceptual Analysis and the Foundations
of Spacetime Theories.

Poincaré’s view of geometry, in sum, starts from a conceptual analysis that
leads to a constitutive principle, a principle that is a kind of definition—
insofar as it is a principle of interpretation—without therefore being an
arbitrary stipulation; it ends with arbitrary stipulations, however, because
the analysis is restricted to the constitutive principles of spatial geometry. In
the development of constitutive principles for spacetime geometry, we see the
fundamental role played by such conceptual analysis, and the comparative
irrelevance of arbitrary stipulations. One clear illustration is the emergence of
the Newtonian conception of inertia, beginning with the work of Galileo. As
we saw, that force is proportional to acceleration, rather than to velocity or
some other quantity, and inertia is thus resistance to acceleration rather than
to change of position, were for Poincaré obvious examples of mere defini-
tions. Galileo did not attempt to argue that these are factual claims arrived at
by induction, but recognized them as interpretations of facts already known to
the Aristotelians. So the question arises, what kind of non-circular argument
could Galileo possibly provide for a definition, other than that it leads to a
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generally simpler system of physics? This question is especially pressing in
view of the problem of “incommensurability,” for, in the absence of a plausi-
ble extension of his physical principles to all the phenomena embraced by
Aristotle’s physics—an extension that was not available before Newton—this
pragmatic argument from global simplicity is not one that Galileo was in a
position to make.

The answer lies in the dialectical process described in theDialogue Con-
cerning the Two Chief World-Systems~1632!, by which Galileo’s spokesman,
Salviati, elicits assent to his conception from the Aristotelian Simplicio. Of
course the conversion of Simplicio, and the dialogue as a whole, are highly
contrived. But the general principle behind Galileo’s argument is more compel-
ling: that his conception of inertia isalready in use, implicitly, in familiar and
well-established empirical judgments. The empirical facts are, apparently, that
motion does not persist and that bodies come to rest on the earth when forces
cease to move them. But it is equally apparent that in familiar cases of rela-
tive motion, we implicitly assume that motion does persist, and implicitly asso-
ciate force with change of motion—for example, in the case of a horse-rider
who throws an object directly to instead of in front of another rider, or of a
shooter who follows a moving target with the gun-barrel instead of “leading”
the target. And while Aristotle’s conception of motion may serve as an inter-
pretation of the first set of facts, and may not directly conflict with the sec-
ond, Galileo’s conception is implicit in the assumption—tacitly but successfully
employed by anyone conducting experiments on a moving ship—that both sets
are phenomena of essentially the same kind. To the challenge of incommensu-
rability, then, Galileo could answer that just this conceptual analysis measures
his conception against Aristotle’s and shows Galileo’s to be superior.6

Galileo’s analysis of motion falls short of establishing a constructive princi-
ple for spacetime geometry, because of the well-known fact that it remains
ambiguous about the natural state of motion for bodies: either uniform motion
in a straight line, or uniform circular motion~e.g., parallel to the surface of
the earth! may be indistinguishable from rest. And this is in a sense appropri-
ate, since the analysis attempts only to draw out the concepts implicit in the
dynamics of motion near the earth’s surface; the precise Newtonian concept
of inertia arises from the extension of Galilean dynamics to the entire plan-
etary system, as first envisaged by Descartes and his followers. It is also well
known that the spacetime structure proposed by Newton, “absolute space,” is
not the structure implicit in his conception of inertia, but something stronger.
What Newton’s laws enable us to construct is not absolute space, but an equiv-
alence class of inertial frames; absolute space, however, makes just that distinc-
tion between uniform motion and rest that the equivalence of inertial frames
denies. But two points about absolute space require emphasis. First, it is, in
fact, a spacetime structure; as Newton defines it, at least, it implies the connec-
tion of spacethrough timein such a way that states of motion are defined,
albeit more states of motion than the dynamics can distinguish. Therefore
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Poincaré was wrong to think that what he calls “the relativity of space” implies
the impossibility of absolute space~1913, pp. 84–85!. For the former follows
from his understanding of space through the group of rigid motions, which,
again, is independent of any dynamical principle; it is perfectly compatible
with a theory that connects homogeneous spacethrough timein the manner
of absolute space, as well as with the correct theory of Newtonian space-
time.7 Second, a constructive principle for absolute space is easy to imagine,
and was in fact imagined by Poincaré himself when he noted the possibility
of defining force by velocity instead of acceleration; in that case rest and
motion in absolute space would be as well defined as acceleration is in the
Newtonian case, and one could attach a dynamical meaning to the claim that
the world has the structure of absolute space, which for Poincaré was only a
convention~1913, pp. 109–111!. We have here another example of something
that is a matter of convention from Poincaré’s view, only because the construc-
tive basis of geometry is seen in exclusively spatial terms.

This understanding of Newtonian spacetime goes against the familiar view
of the positivists, on which not only absolute space, but also absolute time
and absolute rotation, are outstanding examples of empirically ill-defined
notions. Newton’s arguments in support of these notions, especially the “water-
bucket” argument for absolute rotation, seemed to them to be illegitimate
inferences from observation to metaphysical conclusions. It is now obvious,
however, that Newton was not trying to infer theexistenceof “absolute rota-
tion” from observations, but wasdefining absolute rotation as a theoretical
quantity by exhibiting the phenomena that enable us to measure it.8 To this
extent Newton’s proposal has the essential characteristics of a coordinative
definition precisely in Reichenbach’s sense. To be fair, then, the positivists
ought to have conceded Newton’s freedom to define rotation as he saw fit,
provided that he could state—as he undoubtedly did—empirical criteria for
the application of the concept. But Newton’s own defence of the definition is
not merely that it has an empirical application as part of a useful conceptual
framework. Newton provides, in addition, a conceptual analysis similar to
Galileo’s, with a similarly dialectical emphasis: he argues that this conception
of rotation isimplicit in the dynamical reasoning of his contemporaries, what-
ever their official pronouncements about the relativity of motion; in particu-
lar, it is already in usein their dynamical theory of celestial vortices.9

Indeed, the dynamical distinctions that Newton defines among states of
motion—that is, the distinctions of absolute rotation and acceleration from uni-
form motion—are implicit in the 17th-century understanding of causal inter-
action: a body acts on another by changing its state of motion; non-uniform
motion thus requires a causal explanation that uniform motion does not. On
such grounds even Leibniz held that kinematically equivalent motions could
be dynamically distinct. But if this implicit causal distinction is taken seri-
ously, the relativist approach to the “system of the world” is untenable, and
the issue between Copernicus and Ptolemy cannot be a matter of hypothesis
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or convention. For the concepts of inertia and force provide, for any system
of bodies, procedures for constructing a frame of reference—an inertial frame—
relative to which their states of motion correspond to their causal influences
on one another, and these are the motions that Newton felt justified in calling
the “true” motions. This process changes the fundamental question of cosmol-
ogy: the question “which body is at rest?” is no longer appropriate, and is
replaced by empirical questions about the relative masses of the bodies and
the location of their common centre of mass. Since the sun contains most of
the mass of our system, Newton shows, it will never be far from the centre of
mass, and so the heliocentric theory is a better approximation than the geocen-
tric. If the mass were more evenly distributed, however, the difference between
the two would be correspondingly less interesting; it could even be said to be
a matter of convention for a system of two nearly equal masses.

These aspects of Newton’s theory are difficult to appreciate from the logi-
cal positivists’ perspective. Reichenbach, for example, regarded Newton’s choice
of the Copernican system as a coordinative definition of a rest-frame, moti-
vated by the need to accommodate his theory of gravity in the simplest possi-
ble way. This made it difficult to recognize the constitutive principles of the
Newtonian spatio-temporal framework, and their origin in a conceptual analy-
sis of dynamics. On the contrary, the positivists regarded the framework as an
unnecessary metaphysical addition to the dynamical theory. At the same time,
they regarded Einstein’s theories as products of philosophical analysis, but,
again, they understood this as “epistemological analysis” of the most reduc-
tive sort. Therefore they obscured the essential philosophical continuity between
Newton’s and Einstein’s work, and the essential similarity of the conceptual
analyses involved.

As we have already seen, misunderstandings of this sort were encouraged
by Einstein’s own remarks, particularly about general relativity as a reduction
of geometry to coincidences. Even in the case of special relativity, there is
some apparent encouragement for the positivists’ view of a formal structure
connected to experience by stipulation. We know that Einstein~1905! derived
the Lorentz contraction from the “relativity principle” in conjunction with the
constancy of the velocity of light, and we know that the apparent contradic-
tion between these two premises stems from the hidden assumption of abso-
lute simultaneity; we can resolve the contradiction, then, by granting the
relativity of simultaneity. From here we see that the Lorentz contraction, instead
of being an “ad hoc” adjustment of Maxwell’s theory to the failure to detect
the earth’s motion relative to the ether, follows logically and naturally from
Einstein’s premises. But this reasoning only reveals the existence of two equiv-
alent interpretations of the same facts: either the Lorentz contraction is genu-
ine and explains the apparent invariance of the velocity of light, or the
invariance of the velocity of light is genuine and explains the apparent Lorentz
contraction. What is needed, in addition to the formal reasoning, is some
justification for Einstein’s starting-point, which his discussion of simultaneity
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is obviously meant to supply. If the difference between the two interpretations
hangs on the definition of simultaneity, however, then just to that extent it
would appear to be a matter of convention.

Einstein himself begins by asserting that a “common time” for different
observers “cannot be defined at all unless we establish by definition that the
‘time’ required by light to travel from A to B equals the ‘time’ it requires to
travel from B to A” ~1905, p. 40!. Later discussions seem to portray this
assumption of the isotropy of light-propagation as an arbitrary stipulation. In
his popular exposition of his work~1917!, he writes, “Onlyone requirement
is to be set for the definition of simultaneity: that in every real case it provide
an empirical decision about whether the concept to be defined applies or not”;
that light takes the same amount of time to travel in both directions “is nei-
ther a supposition nor a hypothesis, but a stipulation that I can make accord-
ing to my own free discretion, in order to achieve a definition of simultaneity”
~1917, p. 15.! In his Princeton lectures~1922!, he says that “It is immaterial
what kind of processes one chooses for such a definition of time,” except that
it is “advantageous...to choose only those processes concerning which we know
something certain”~1922, pp. 28–29!. Remarks like these suggest that special
relativity, as a theoretical framework, is connected with reality only by the
choiceof light-propagation as the standard of simultaneity. The best that one
could say of the framework is that it is based on a “practical” procedure for
determining which events are simultaneous; in the Newtonian framework,
instantaneous causal propagation provides absolute simultaneity with a theoret-
ical basis, but not a practical procedure.

On a closer look at Einstein’s stipulation, however, we can discern the pro-
cess of conceptual analysis that provides its physical and philosophical motiva-
tion. One aspect of the analysis has already been mentioned, that is, the analysis
of the contradiction between the relativity principle and the light postulate, and
the resulting recognition that their incompatibility depends on the assumption
of absolute simultaneity; observers in relative motion can agree on the veloc-
ity of light only if they disagree on which events are simultaneous. A similar
analysis shows that the concept of simultaneity is bound up with our measure-
ments of spatial and temporal intervals, so that observers who disagree on
which events are simultaneous have no common measure of length and time.
These are familiar aspects of special relativity. But while they illuminate the
distinction between Einstein’s framework and Lorentz’s and the assumptions
on which each is founded, they don’t by themselves argue for either. The sec-
ond, in particular, had already been articulated within the Newtonian frame-
work, with no intention of questioning the framework, but merely in order to
acknowledge its fundamental assumptions.10

The decisive analysis is the one that exhibits Einstein’s definition of simul-
taneity, not merely as a free stipulation that is logically unexceptionable, but
as an account of the physical content of our empirical judgments of simultane-
ity. Thus it is not freely chosen, because it has a number of requirements to
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satisfy. Nor is the definition an operationalistic reduction of those judgments
to practical procedures, because it makes essential use of theoretical princi-
ples. Einstein begins by proposing two practical procedures, each of which sup-
plies an “operational definition” of simultaneity: to define “time” by “the
position of the small hand of my watch,” and to coordinate the time of every
event with a watch at a fixed location, by the time at which a light-signal from
each event reaches the watch. The first obviously fails to meet the require-
ment of defining simultaneity for distant events; the second meets that require-
ment, but “has the disadvantage that it is not independent of the standpoint of
the observer”~1905, p. 39!. From the rejection of these possibilities we see
that Einstein is not only trying to coordinate the concept with a physical pro-
cess of propagation. He is also trying to capture what is contained in the
abstract notion of “absolute simultaneity”—not necessarily absolute simultane-
ity in Newton’s sense, but, at least, a criterion of simultaneity that does not
depend on the standpoint of the observer, and that makes simultaneity a sym-
metric and transitive relation. Therefore the required coordination is not an arbi-
trary choice, for it has two independent motivations. On the one hand, it is
“the most natural definition of simultaneity”~1917, p. 18!; it is in fact the def-
inition that human beings ordinarily use, insofar as we consider events to be
simultaneous when we see them at the same time, without stopping to wonder
whether this criterion would give the same results for observers in relative
motion. On the other hand, once we raise the problem of relative motion, we
need a criterion derived from aninvariant process of propagation, and the
invariance of the velocity of light uniquely meets this need. It is this unexpected
accord between the “natural” definition of simultaneity and the empirically
established invariance of the laws of electrodynamics, rather than the need for
a stipulation or an operational definition, that Einstein’s conceptual analysis
reveals.

The need for an abstract notion of “absolute simultaneity” is an instructive
point of comparison between Einstein and Newton. Our intuitive sense of simul-
taneity, based on seeing events at the same time, neglects both the motion of
the earth and the time of propagation for light, which for most practical pur-
poses is immeasurably small. From Newton and Einstein, respectively, we have
two ways of abstracting from this criterion of simultaneity to arrive at one that
has a theoretical basis in the laws of physics, and that is independent of the
reference frame of the earth. Newton’s approach neglects as a matter of princi-
ple the time of propagation: the abstraction consists precisely in leaving out
altogether the method of signalling, and assuming that which events are simul-
taneous is a matter of fact that does not depend on the standpoint of any
observer. And this is no more than what is implicit in the principle that force,
mass, and acceleration are independent of the motion of the observer, and the
principle that gravitational attraction depends only on the masses and dis-
tances of the interacting bodies without reference to time. The latter provides
~in principle! an instantiation of absolute simultaneity, rather than a practical
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means of determining it, but the phenomena addressed by Newton present no
reason to suspect that this difference might be important. In any practical situ-
ation, it would seem intuitively obvious that the light-signalling method would
provide, at least, a retrospective account of which past events were absolutely
simultaneous—assuming that, in cases of relative motion, the Newtonian addi-
tion of velocities would apply to light signals as well.

Einstein’s abstraction, by contrast, consists in giving precedence to the intu-
itive method of determining simultaneity, and asserting its independence of the
motion of the observer—an entirely contingent assertion that was warranted
by the state of electrodynamic theory and experiment in 1905, but that would
have made little sense before then. It turns out, however, that this “absolute”
criterion of simultaneity does not give the same results for observers in rela-
tive motion, but results that vary from frame to frame strictly according to the
degree of relative motion. We can see from this that Einstein’s analysis of
simultaneity was not, any more than Newton’s was, an epistemological reduc-
tion of the concept to purely phenomenal means of verification. Rather, each
was an abstraction from the familiar concept, made possible by the contempo-
rary state of development of theoretical physics. In other words, neither con-
ceptual analysis is merely an analysis of “what we mean by simultaneity”; both
are analyses of the relationship between what we ordinarily mean by simulta-
neity, and the meaning that is implicit in established theoretical principles.

The foregoing highlights the difference between the positivists’ philosophi-
cal reconstructions of Einstein’s analysis of simultaneity, and its true philosoph-
ical content. Einstein’s analysis enabled Minkowski~1908! to formulate the
spacetime geometry that is implicit in special relativity, and, in particular, to
see that the Lorentz transformations, rather than the Galilean, constitute the
symmetry-group of spacetime. As Helmholtz and Poincaré had understood
the notion of space through the possibility of certain spatial displacements,
Minkowski recognized that the laws of Newtonian mechanics and special rel-
ativity enable us to understand a spatiotemporal structure through the possibil-
ity of certain “spatiotemporal displacements”: the coordinate transformations
that preserve the dynamical invariants of each theory. The symmetry group
“G`” of Newtonian mechanics defines one sort of spatiotemporal structure,
while the symmetry group “Gc” of electrodynamics, as Einstein had shown,
defines a different structure, andG` arises fromGc in the limit as the param-
eter c ~the invariant velocity! goes to infinity. From the conventionalist point
of view, to accept either of these as the structure of spacetime is to make an
arbitrary stipulation. But this situation is not quite analogous to the one con-
fronted by Poincaré. As we have seen, explicating the concept of space through
the group of rigid motions identifies the physical principle that is constitutive
of space, but leaves the precise geometry indeterminate. Minkowski’s concep-
tual analysis of spacetime, however, identifies spatiotemporal displacements
as symmetries of the laws of physics. Therefore when we identify the consti-
tutive principles of spacetime, or the fundamental physical laws, we are already
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determining the geometry of spacetime, or at least placing it beyond the reach
of conventional choice.11 Minkowski makes it clear that his picture of space-
time is not founded on a stipulation, nor is it advanced as a hypothetical
explanation of electrodynamic phenomena. Rather, it simply is the structure
implicit in our understanding of the laws of electrodynamics: “Now the impulse
and true motive for assuming the groupGc came from the fact that the differ-
ential equation for the propagation of light in empty space possesses that
group Gc” ~1908, p. 81!. That the electrodynamics of moving bodies pos-
sesses this structure is not decisive, of course, since, as Minkowski points
out, the same structure characterizes Lorentz’s theory. But the decisive argu-
ments had already been given by Einstein, who had recognized that “the time
of the @moving# electron is just as good as that of the@electron at rest#”
~1908, p. 82!. In other words, that this structure expresses the symmetries of
electrodynamics is a mathematical fact~one already noticed by Poincaré, who
nonetheless held to the Lorentzian framework!, but that this structure also
expresses the fundamental symmetries of spacetime emerges from Einstein’s
analysis of time.

The cases of Newtonian mechanics and special relativity reveal, in sum, the
manner in which the laws of physics serve as the constitutive principles of
spacetime geometry, and the kind of conceptual analysis from which those prin-
ciples have emerged. For general relativity, however, Einstein explicitly offered
the kind of reductive epistemological analysis that we have already discussed,
in order to eliminate not only the privileged status that the previous theories
granted to inertial frames, but the physical objectivity of space and time in
general. In all of this, a crucial role was played by the reduction of spatiotem-
poral measurement to the determination of coincidences. As we have seen, this
conceptual analysis yields a completely general mathematical framework for
spacetime geometry that appears to have no physical content. But it is easy to
see why it would not have appeared so to Einstein and the logical positivists:
in addition to the principle of general covariance, which in itself functions as
a kind of meta-principle, they assumed the~generally covariant! Einstein field
equation, which does impose more definite constraints on spacetime than merely
capturing “the objective spacetime coincidences,” and which constitutes a phys-
ical relation that is unchanged by the arbitrary change of coordinates. Thus
the accounts of general covariance and of point-coincidences suggest a radi-
cal “geometrical relativity of space,” while the field equation saves the theory
from physical vacuousness. In that case, however, the motivation for the field
equation becomes a serious philosophical question. Einstein’s explicit philo-
sophical starting-points—Mach’s principle, and the identification of general
covariance with the “general relativity” of motion and the equivalence of all
frames of reference—motivate, at most, a framework in which any Riemann-
ian geometry is physically possible, and the homogeneous geometries of New-
ton and Minkowski appear to be relatively naive physical idealizations. This
framework may perhaps raise the expectation of spacetime curvature, and it
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unquestionably played an important psychological and heuristic role in Ein-
stein’s thought. It is a great leap, however, from such a general expectation to
the theory of spacetime curvature as a physical quantity that depends on phys-
ical conditions. As Friedman~2002! points out, a crucial link was Einstein’s
analysis of geometrical measurement on a rotating disc~cf. Einstein 1916,
pp. 115–117!, which provided his first glimpse of non-Euclidean geometry as
a way of modelling a physical field, and the first step toward a theory of non-
Euclidean spacetime. But more than this is required to provide the basis for a
constructive theory of spacetime geometry, in which curvature plays the role
of the gravitational field.

To the positivists, what was required was a stipulation—again, a stipula-
tion that the spacetime geodesics are the paths of falling bodies. And we have
already seen why this would have seemed plausible: not only because of the
reduction of the objective content of geometry to coincidences, but because
the identification of free-fall trajectories as geodesics seems to be a clear case
of a coordinative definition. But we are now in a position to understand the
origins of this definition in a conceptual analysis. The analysis starts from the
empirical equivalence of inertial and gravitational mass, and the consequent
indistinguishability of inertial motion from free fall.12 In Einstein’s well-
known example, a frame of reference at rest in a homogeneous gravitational
field, with gravitational accelerationg, is observationally indistinguishable from
a frame with uniform acceleration-g; for the same reason, a freely-falling frame
is indistinguishable from an inertial frame. It is also well known that in Ein-
stein’s initial analysis, this indistinguishability was taken to indicate the phys-
ical equivalence not only of freely-falling and inertial frames, but of any frames
whatsoever, and of all states of motion. To derive from this apparently destruc-
tive analysis a constructive basis for spacetime geometry, we have to see that
it defines, in spite of the apparent arbitrariness, an objective physical quan-
tity. From there we would see why the interpretation of gravitational free-fall
as a privileged state of motion, and the trajectories of falling bodies as the
constructive basis for spacetime geometry, is not a convention, but the out-
come of an analysis of what is implicit in our knowledge of gravitational fields.
For it follows from the equivalence principle that noactual measurement of
gravitational acceleration is ever a measurement of deviation from a flat-
spacetime geodesic—that is, the measured quantity is never absolute accelera-
tion in Newton’s sense, but the relative acceleration of free-fall trajectories.
If, after the example of Minkowski’s analysis of special relativity, we now ask
what structure is exhibited by these trajectories, we naturally arrive at a space-
time whose curvature varies with the distribution of mass.

This last inference may sound like a drastic oversimplification, but it is in
fact a paraphrase of Einstein’s actual procedure in moving from “the general
theory of relativity” as articulated in the first three sections of Einstein
~1916!—in which spacetime is assumed to be locally Minkowskian, but other-
wise open to arbitrary choices of reference-frame—to the theory of spacetime
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curvature as the objective expression of gravitational phenomena. For the first
link between the generally covariant formalism and the physics of gravitation
is the “equation of the geodetic line”~pp. 131–32!: mathematically, it is inde-
pendent of the choice of coordinates, and its physical correlate is the privi-
leged state of motion of a particle, namely gravitational free-fall. From this
perspective, the Newtonian account of free fall as “forced” deviation from
geodesic motion turns out to depend precisely on the arbitrary choice of a
coordinate system. For when we measure the acceleration of a falling body
relative to a supposed inertial frame, such as the centre of mass frame of
some system, we have no way to determine whether that frame itself is in
free fall or inertial motion, since, by the equivalence principle, the system
will behave in the same way in either case. What we actually measure, again,
is merely the acceleration of the free-fall trajectories within the frame relative
to the free-fall trajectory of the frame itself. Therefore to interpret the former
as measures of “the gravitational field” is to make an arbitrary stipulation that
the centre of mass follows a geodesic—a stipulation that manifestly amounts
to a mere choice of coordinates; if the geodesic motions are to be objectively
identified, and not merely stipulated, the free-fall trajectories are the only
possible ones. But these trajectories have relative accelerations, and the rela-
tive acceleration of geodesics is a defining characteristic of curved spacetime.

One could make the same point by arguing from the Newtonian field equa-
tion ~the Poisson equation!, which relates gravitational acceleration to the dis-
tribution of mass. In principle we could learn the absolute magnitude of the
gravitational potential by applying this equation; in fact, however, what we
actually measure is only the relative acceleration of free-fall trajectories, or
the gravitational tidal field, which is independent of the free-fall motion of
the entire system—a fact already exploited by Newton’s analysis of the gravi-
tating system of Jupiter and its moons, whose interactions are~practically! inde-
pendent of the system’s free-fall toward the Sun. It follows that the gravitational
potential itself depends on the arbitrary designation of some freely-falling frame
as an inertial frame. By analogy to the argument about geodesic motion, if
we seek to replace the coordinate-dependent “absolute” acceleration, in the field
equation, with an objectively measurable quantity, we require a structure that
simply represents the tidal accelerations themselves, without the arbitrary
assumption of an inertial frame relative to which their true magnitudes are
known. The identification of free fall as geodesic motion enables us to iden-
tify the required structure as the curvature of spacetime.

The foregoing helps to clarify Einstein’s use of the principle of general
covariance: hidden behind its destructive use to eliminate all objective spatio-
temporal distinctions, we find a constructive conceptual analysis, showing
that in our empirical knowledge of the gravitational field, there is an implicit
distinction between objective physical quantities and coordinate-dependent
quantities. But this distinction is not reflected in the spatiotemporal frame-
work in which we ordinarily understand the field. In particular, the Newtonian
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definition of geodesic motion is embodied in Newton’s laws, but is not really
in use in the analysis of any gravitating system; any such analysis implicitly
uses the definition of privileged trajectory, and of privileged frame of refer-
ence, that Einstein derives from the equivalence principle. In some sense this
was acknowledged by Newton himself in Corollary VI to the laws of motion,
which states that a uniformly accelerated system of bodies will be indistinguish-
able from one in uniform non-rotational motion; this enabled him not only to
treat Jupiter and its moons as an isolated system, but also to treat the solar
system itself as isolated, and to neglect any parallel acceleration of the whole
by some other unknown forces, since by such forces “no change would hap-
pen in the situation of the planets to one another, nor any sensible effect
follow” ~1729, p. 558!. In hindsight, this reasoning leads to a geometrical
reformulation of Newtonian gravity, since it shows that the reasons to identify
the gravitational field with the~curved! affine structure of spacetime are inde-
pendent of the transition from Galilean to Lorentz invariance.

To compare Newton’s and Einstein’s points of view, we should note that,
analogously to their definitions of simultaneity, their respective definitions of
geodesic arise from two ways of abstracting from the empirical conception of
gravitational force. The empirical problem is to decompose the acceleration
of any body into components, one for each of the action-reaction pairs of which
the body is a member; this is Newton’s precise and general form of Galileo’s
analysis of inertial and projectile motion~which was too closely bound to the
reference frame of the earth!. In actual cases, however, this decomposition fails
to identify the inertial component of the body’s motion; for example, it identi-
fies not the inertial component of a planet’s motion, but the component that is
uniform with respect to centre of mass of the solar system, which may itself
be freely falling. Of course, by Newton’s third law, if the solar system is fall-
ing, then it belongs to some larger interacting system; if that system is fall-
ing, it must belong to some still larger system; and so on. Thus Newton’s
conception of an inertial frame abstracts from this infinite regress, conceptu-
ally separating the process of decomposition from all finite physical systems
in which it might conceivably be carried out. This amounts to supposing that,
in principle, all the contents of the universe might be included in one interact-
ing system, and an acceleration of the centre of mass of the system would then
be excluded by the laws of motion. Einstein’s abstraction, instead, identifies
the actual process of decomposition as the definitive one: analogously to his
method of determining simultaneity, it is this procedure that is the same for
every actual physical system. And by this means he identifies the “local” iner-
tial component as definitively inertial—that is, the free-fall trajectories as the
genuinely inertial trajectories.

It would seem, then, that Einstein’s conceptual analysis of gravity and iner-
tia is one that Newton might already have undertaken, given the right math-
ematical tools. Yet on a closer consideration, we can see that the analysis is
essentially contingent on the subsequent evolution of physics, and in particu-
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lar on the state of electrodynamics in Einstein’s time. From Newton’s perspec-
tive, the indistinguishability of inertial motion and free fall does not necessarily
undermine the global determination of spacetime geometry, because his theory
of gravitation has no particular implications for the behaviour of light: to the
extent that the mass of light is unknown, it is unclear whether optical phenom-
ena ought to be subject to Corollary VI. This is why for Einstein’s theory, it
is crucially important to have shown thatno phenomena, mechanical or elec-
trodynamical, behave differently in a freely-falling frame and in a Lorentz
frame, and therefore there are no phenomena that provide a measure of the
relative acceleration of the one frame and the other.13 And this is the deeper
significance of the celebrated light-deflection observations, which supported
Einstein’s inclusion of light among the phenomena governed by the equiva-
lence principle. Newton might hold out the possibility that some optical, or
other non-gravitational, effect could provide a constructive basis for flat space-
time geometry, distinct from the implicit geometry of free-fall trajectories
~equivalently, for an inertial frame as distinct from a freely-falling frame!; in
this context, one might even be able to make sense of the conventionalist claim
that there is a free choice between two adequate constructive bases for space-
time geometry. Given Einstein’s extended principle of equivalence, however,
any physical procedure for identifying an inertial trajectory~or a Lorentz frame!
must fail to distinguish it from a free-fall trajectory~or a freely-falling frame!.
Moreover, we can see from this argument why the status of Einstein’s analy-
sis remains contingent on the future development of physics: it leaves open
the possibility that, at higher levels of precision or in novel experimental con-
texts~for example, those connected with quantum effects in gravitational fields!,
violations of the Einstein equivalence principle could weaken the grounds for
identifying gravity with spacetime geometry.

4. Conclusion.

In all of these historical cases, we find that the constitutive principles of space-
time geometry are definitions of a sort; more precisely, they are interpretive
claims rather than empirical claims, for they propose that certain characteris-
tic physical phenomena be interpreted through certain geometrical structures.
Yet these definitions are in no sense mere conventions. Instead, each arises
from a conceptual analysis of procedures of spatiotemporal measurement; in
each case the definition is not chosen from among equivalent alternatives, but
discovered to be implicit in current empirical principles at a critical moment
in the history of physics. The logical positivists, as we have seen, had diffi-
culty reconciling the interpretive aspect of Einstein’s principles with their con-
structive physical content. In Einstein’s conceptual analyses, these aspects are
not only compatible, but inseparable. Moreover, the analyses justify the posi-
tivists’ sense that relativity represented a philosophical advance in our under-
standing of space and time, and not merely a set of new physical hypotheses.
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But they do so without appealing to narrow and unrealistic epistemological
restrictions. Probably no general methodological rule can be given for decid-
ing when enlarged empirical knowledge should lead to a re-evaluation of fun-
damental concepts; the disappointed expectation of such a rule is perhaps a
major psychological motivation for the view that conceptual change is ratio-
nally inexplicable. But the kind of change introduced by Galileo, Newton, and
Einstein arises from a critical conceptual engagement with an existing frame-
work, an engagement that is philosophically comprehensible, but not as an
instance of any methodological maxim.

The great conceptual changes in spacetime theory thus vindicate, in a nar-
row sense, a central philosophical theme of logical positivism: that physical
geometry constitutes a framework that makes ordinary empirical arguments and
measurements possible, and therefore that arguments for the framework itself
must be of a fundamentally different kind. To this narrow extent, moreover,
the history of spacetime theory vindicates the positivists’ neo-Kantian associa-
tion of space and time with the general problem of a priori knowledge. Their
account of the a priori aspect of physical geometry improved upon Kant’s, at
least, by recognizing the connection between geometrical postulates and phys-
ical hypotheses, and the interpretive character of the postulates. The positiv-
ists had learned, in other words, that the empirical content of the postulates
derives from the physics of motion, while in form the postulates are more like
analytic or meaning-constitutive principles than synthetic principles in Kant’s
sense. And this reconciled their brand of apriorism with the historical contin-
gency and mutability of geometry in a way that was impossible for Kant’s.
Einstein’s theories, in particular, seemed to exemplify the idea that empirical
geometry has the status of an a priori framework: first, because they seemed
to arise from analysis rather than from ordinary empirical inference, and sec-
ond, because they present spacetime structure as a background against which
the forces of nature are defined and investigated.~Even in the case of general
relativity, in which spacetime is no longer prior to gravity, a form of Poincaré’s
hierarchy survives insofar as allnon-gravitationalinteractions are defined with
respect to the local Minkowski metric.!

The positivists were not completely misguided, therefore, in thinking that
they had captured the Kantian idea of space and time as “conditions of the
possibility” of ordinary empirical reasoning, while incorporating the insights
of Helmholtz and Poincaré into the empirical origins of geometry. Like Kant
in the 18th-century context, they were in a position to transcend metaphysical
disputes about space and time—such as whether they are “substantival” or
“relational”—by showing how spatiotemporal structures arepresupposedby
our usual reasoning about substances and their relations. By embracing conven-
tionalism, however, the positivists went beyond acknowledging the distinction
between a spatiotemporal framework and the kind of empirical reasoning that
is possible within it; they claimed to remove the defining principles of the
framework from theoretical reasoning altogether. This result would not arise
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for Kant, because he identified one particular framework as the sufficientand
necessarycondition of scientific reasoning. But by end of the 19th century,
the multiplicity of possible frameworks was an obvious fact. For the positiv-
ists, this fact had obvious implications for the Kantian idea of objective knowl-
edge, as judgment conforming to the conditions of the possibility of experience.
For it implied not only the “relativized a priori”—i.e., the contingency and
mutability of the framework-constituting principles—but also the relativity of
objective knowledge itself, as something defined only with respect to a set of
arbitrary stipulations. Carnap’s distinction between internal and external ques-
tions merely expressed this relativity in its starkest form: for the comparison
among frameworks one had, at best, a neutral descriptive language rather than
a theoretical or critical standpoint, so that the adoption of any framework was
necessarily a matter of pragmatic decision. In the dispute about abstract enti-
ties in the foundations of mathematics~cf. Carnap 1956!, Carnap’s distinction
may appear to play a modest clarificatory role; in the dispute between compet-
ing theories of spacetime geometry, it seems to deny that there is any serious
issue concerning the structure of the physical world.

By appreciating the role of conceptual analysis in conceptual change, we
arrive at a subtler distinction than Carnap’s: between questions that take a
particular framework for granted, and questions about the conceptual struc-
ture of the framework itself—in particular, questions about the relation between
the explicit principles of the framework, on the one hand, and the concepts
that are implicit in our empirical knowledge, on the other. Questions of the
first kind may be internal, but questions of the second kind are not really
external in Carnap’s sense. On Carnap’s view, for example, the question whether
falling bodies follow spacetime geodesics is either an internal question about
how geodesics are defined within a given spacetime theory, in which case it
is answered by internal logical analysis, or a question about the expediency
of adopting a framework that defines geodesics as the paths of falling bodies.
But neither question could have motivated Einstein’s analysis of gravitation.
Both the internal and the external questions take the competing frameworks
as given, whereas the framework of curved spacetime is precisely theproduct
of Einstein’s analysis; the given material for the analysis is only the known
behaviour of falling bodies as understoodwithin the flat-spacetime frame-
work. Carnap’s distinction, in other words, does not comprehend the possibil-
ity of a conceptual analysis that discovers, within a given framework, the
principle on which a radically new framework can be constructed.

The failure to comprehend this possibility epitomizes the failure of conven-
tionalism as a critique of the synthetic a priori. The conventionalists supposed
that objective reasoning is either logical analysis of the structure of a frame-
work—including the identification of its arbitrary stipulations—or empirical
reasoning within the constraints of a framework. Conventionalism thus did
not go beyond or even reject Kant’s notion of the synthetic a priori, but
merely denied that any of our knowledge answers to that notion, and classi-
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fied framework-constitutive principles as analytic. But the essential problem
for Kant’s notion, in light of the developments in physical geometry over the
last two centuries, was not the discovery that alternative frameworks could be
arbitrarily defined and freely adopted. Rather, it was the realization—implicit
already in Galileo and Newton, and clearly articulated by Helmholtz, Rie-
mann, and Einstein—that the constitutive principles of physical geometry are
not quite synthetic in Kant’s sense, and yet they are founded in our empirical
knowledge of physics; the revolutionary changes in these principles were in
some sense changes of definition, and yet they express a deepening understand-
ing of physical space and time. These aspects of the framework-constitutive
principles help to explain Quine’s objections to calling them “true by conven-
tion.” Comprehending all of these aspects requires a subtler view of concep-
tual analysis than conventionalism allows, and a role for analysis beyond the
logical reconstruction of existing theories. Above all, it requires an apprecia-
tion of the continuing interaction between conceptual analysis and the growth
of empirical knowledge, and the decisive part that such interaction has played
in the evolution of physics.
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1 See, for example, Putnam 1974, Glymour 1977, and Norton 1995.
2 See Friedman, 1999c. For the sake of convenience, I follow Friedman in writing “the posi-

tivists” to refer, primarily, to Schlick, Reichenbach, and Carnap.
3 Reichenbach’s discussion of universal forces was endorsed by Carnap~cf. 1966, p. 171!,

but subsequently has been widely criticized; see, e.g., Torretti~1983! for an especially useful analy-
sis. Still it should be recognized that, as an effort to judge possible coordinative definitions on
methodological grounds—by proposing to eliminate hypothetical and undetectable “forces” that
might be introduced in order to save a particular geometry—Reichenbach’s discussion anticipates
some celebrated later attacks on conventionalism, such as Glymour~1977!.

4 Cf. Friedman~1999b!. According to Friedman, Reichenbach’s earlier position on the a pri-
ori constitutive principles of physics, in his 1920 workThe Theory of Relativity and A Priori
Knowledge~1965!, was an insightful one that was largely obscured by his attempt to assimilate it
to the conventionalism of Schlick in the 1927 work,The Philosophy of Space and Time~1957!.
Admitting the justice of this criticism, I suggest that Reichenbach recast his constitutive princi-
ples as conventions because he realized that such principles have a definitional aspect, even if
they also appear to be suggested by the facts: “It is again a matter of fact that our world admits
of a simple definition of congruence because of the factual relations holding for the behaviour of
rigid rods; but this fact does not deprive the simple definition of its definitional character”~1957,
p. 17!. But he did not arrive at a characterization of those principles that would do justice both to
their definitional character and to his earlier philosophical concerns. On the one hand, he came to
share Schick’s view that these definitions are arbitrary; on the other hand, he continued to criti-
cize Poincaré for “overlook@ing# the possibility of making objective statements about real space”
~1957, p. 36 n.3!.

5 See, for example, Schlick 1917, section VI, and Reichenbach 1957, section 36.
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6 This illustrates Torretti’s conclusion that incommensurability is not a serious difficulty in a
case where the new conceptual framework arises from conceptual criticism of the old, as does
Galileo’s in relation to Aristotle~1989, section 2.5!. It may also illustrate what Stein means by
the “dialectic” of science, as a criticism of Carnap’s view that conceptual frameworks can be com-
pared only on general pragmatic grounds~1992, pp. 291–292!.

7 It is not generally acknowledged, in the literature on the “absolute-relational” controversy,
that the familiar “indiscernibility” arguments against absolute space~as first presented by Leib-
niz! are, like Poincaré’s, arguments from the homogeneity and isotropy ofspace; therefore, they
are as irrelevant as Poincaré’s arguments to thespatiotemporalstructure identified by Newton as
“absolute space.” The confusion arises from the failure to separate the question whether the struc-
ture of space allows for a distinguished position, and the question whether the structure of space-
time allows for a distinguished velocity.

8 This is documented in detail by Stein~1967!.
9 Newton refers directly to the Cartesians’ use of the centrifugal forces in vortices in the

causal explanation of planetary motion, and points out its implicit accord with his definition: “Thus,
even in the system of those who hold that our heavens revolve below the heavens of the fixed
stars and carry the planets around with them, the individual parts of the heavens, and the planets
that are relatively at rest in the heavens to which they belong, are truly in motion. For they change
their positions relative to one another~which is not the case with things that are truly at rest!,
and as they are carried around together with the heavens, they participate in the motions of the
heavens and, being parts of revolving wholes, endeavour to recede from the axes of those wholes”
~1726, p. 413!. In his unpublished manuscript, “De gravitatione et aequipondio fluidorum,” he
explicitly notes the discrepancy between Descartes’s relativistic definition of “motion in the phil-
osophical sense,” and his use of “motion in the vulgar” sense for actual philosophical~i.e. physi-
cal! reasoning: “And since the whirling of the comet around the Sun in his philosophical sense
does not cause a tendency to recede from the center, which a gyration in the vulgar sense can do,
surely motion in the vulgar sense should be acknowledged, rather than the philosophical”~Hall
and Hall, p. 125!. This interpretation of Newton is documented at greater length in DiSalle~2002!.

10 James Thomson articulated the connection between the assumption of absolute simultane-
ity and the measurement of length and time, in introducing the notion of~what we now call! an
inertial frame in Newtonian mechanics~1884!. See also Torretti~1983, pp. 52–53!.

11 The qualification is required for the case of general relativity, in which the laws fix not the
geometry itself, but the correspondence between the geometry and the distribution of matter.

12 For useful studies of Einstein’s use of the equivalence principle, see Torretti~1983, chapter
5.2!, and Norton~1985!.

13 Cf. Einstein: “But this view of ours@i.e. of the equivalence of a systemK at rest in a homo-
geneous gravitational field, and a systemK 9 that is uniformly accelerating# will not have any
deeper significance unless the systemsK andK 9 are equivalent with respect to all physical pro-
cesses, that is, unless the laws of nature with respect toK are in entire agreement with those
with respect toK 9” ~1911, p. 101!.
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