
Master Thesis
Software Engineering
Thesis no: MSE-2002:12
June 2002

Managing network loads with agent

technology

Martin Kristell

Department of
Software Engineering and Computer Science
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby

This thesis is submitted to the Department of Software Engineering and Computer Science
at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree
of Master of Science in Software Engineering. The thesis is equivalent to 20 weeks of full
time studies. All material in this thesis which is not my own work has been identified and
no material is included for which a degree has previously been conferred.

Contact Information
Author:
Martin Kristell
Address: Sjuhallavägen 66, 370 24 Nättraby, Sweden

University advisors:
Prof. Paul Davidsson
Ph.D. Stefan Johansson
Department of Software Engineering and Computer Science

Department of
Software Engineering and Computer Science
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby

Internet
Phone
Fax

: www.bth.se/ipd
: +46 457 38 50 00
: +46 457 271 25

ABSTRACT

The objective for this thesis is to implement and compare four multi-agent
architectures proposed to manage utilisation levels in distributed computing.
The main part of this is to find and analyse the attributes that describe how
the architectures differ from each other and make them excel in different con-
texts. The intelligent network concept from the telecommunication industry
is used as sample application for the empirical examinations.

Keywords: dynamic resource allocation, load balancing, congestion control

iii

Contents

1 Introduction 1
1.1 The Intelligent Network problem . 1
1.2 Research questions . 2
1.3 Research method . 2

2 The application 3

3 The architectures 5
3.1 Centralised auction . 6
3.2 Hierarchically distributed auctions . 8
3.3 Centralised leaky bucket . 9
3.4 Mobile broker . 11

4 Simulation – preconditions 13
4.1 Simulator configuration . 13

4.1.1 General setup issues . 13
4.1.2 Architecture specific issues . 14

4.2 Description of the attributes to be investigated 15

5 Simulation – results 17
5.1 Utilisation of resources . 17
5.2 Load balancing . 18
5.3 Reactivity . 20

5.3.1 Overload control - preconditions 20
5.3.2 Overload control - comments upon the simulation results 25
5.3.3 Balancing of an unequally applied load 26
5.3.4 Conclusions regarding reactivity 33

5.4 Response time . 33
5.5 Communication overhead . 35
5.6 Robustness . 36
5.7 Fairness . 37

v

5.8 Scalability . 37

6 Conclusion 39

References 41

A Extract of MARINER Simulation Handbook, 1999 43
A.1 Service Specifications . 43

A.1.1 Service A: Virtual Private Network 43
A.1.2 Service B: Ringback . 46

A.2 Network and node specification . 46

vi

List of Figures

3.1 The centralised auction (CA) architecture 6
3.2 The hierarchically distributed auctions (HA) architecture 8
3.3 The centralised leaky bucket (CLB) architecture 10
3.4 The mobile broker (MB) architecture . 12

4.1 The basic network configuration used in the simulations 14

5.1 Utilisation of resources . 18
5.2 The standard deviation of the carried load 19
5.3 The expected shape of the synchronised peak simulation 20
5.4 Centralised auction exposed to a synchronised peak 21
5.5 A zoom-in of the same simulation as in figure 5.4 21
5.6 The hierarchically distributed auctions architecture exposed to a synchro-

nised peak . 22
5.7 A zoom-in of the same simulation as in figure 5.6 22
5.8 Centralised leaky bucket exposed to a synchronised peak 23
5.9 A zoom-in of the same simulation as in figure 5.8 23
5.10 Mobile broker exposed to a synchronised peak 24
5.11 A zoom-in of the same simulation as in figure 5.10 24
5.12 The offered load used in section 5.3.3 27
5.13 Individual carried unequally applied load for CLB 28
5.14 Individual carried unequally applied load for CA 29
5.15 Individual carried unequally applied load for HA 29
5.16 Total carried unequally applied load for MB 30
5.17 Individual carried unequally applied load for MB 30
5.18 Individual carried non-worst unequally applied load for HA 31
5.19 Total carried non-worst unequally applied load for MB 32
5.20 Individual carried non-worst unequally applied load for MB 32
5.21 Average connection response time at different offered load situations . . . 34
5.22 Average connection response time at different carried load situations . . . 34
5.23 Communication overhead . 36

vii

A.1 Service A (VPN) MSC . 44
A.2 Service B (Ringback) MSC . 45

viii

Chapter 1

Introduction

The main objective for this thesis is to implement and compare four multi-agent archi-
tectures proposed to manage utilisation levels in distributed computing. One part of this
is to find and analyse the attributes that describe how the architectures differ from each
other and make them excel in different contexts. The Intelligent Network concept1 from
the telecommunication industry is used as sample application for the empirical examina-
tions.

The fundamental problem these architectures are proposed to cope with is that; When
utilisation of the central processing unit in an unmanaged computer system (no matter if
it is a stand-alone personal computer or an Intelligent Network) reaches a certain level,
there will be problems in form of e.g. delays, service denials or in worst case a system
crash. To prevent such unacceptable behaviour, the level of utilisation must be managed.

The needs for computational resources often come in bursts. That gives that it is
unwise to use such a powerful system that it will handle the load peaks without problem,
most likely a system that will manage to handle the average load level is a better choice.
The latter means that you must be able to manage the utilisation level to prevent your
system from uncontrolled behaviour during peaks in load. A telephone network operator
may for example want to reserve resources to ensure that it will always be possible to
make emergency calls to 112 even when the network is overloaded.

1.1 The Intelligent Network problem

Intelligent Network is a term used by the telephone industry to describe services such as
e.g. “Call forwarding on no reply”, “Call-back” and “Wake up call”. As these services
rely on centralised computing resources, these services are vulnerable to traffic peaks.
And because the use of these services are often synchronised, initiated by television pro-
grams for voting or lottery purposes, the requests often come in bursts. The algorithm

1Please refer to [8] for a definition of Intelligent Network

1

2 CHAPTER 1. INTRODUCTION

that manages the network load must be able to cut off the peaks without annoying the
telephone users, and it must be able to utilise the resources as close to the system’s upper
limit as possible without exceeding it. In a commercial telecommunication network, it is
obvious that the operator wants no spare bandwidth, he wants to be paid for every piece
of resource he owns.

The Intelligent Network load control problem has been studied by Arvidsson, Davids-
son, Johansson and Carlsson, their work are presented in the articles [1, 2, 3]. They have
in detail described and proposed four different multi-agent architectures to address the
Intelligent Network load control problem. With help from a discrete event simulator,
constructed by Arvidsson et al. and implemented by Ericsson AB, Davidsson, Johansson
and Carlsson have so far started to evaluate and validate two of these four architectures.
The continuum of these studies will be the subject for this thesis.

1.2 Research questions

The research questions this thesis will try to answer are

– How do the proposed architectures manage compared to each other in terms of:

• ability and speed in adapting to changes in the offered load

• ability to keep the carried load close to the target load

• ability to balance the load equally between the providers

• how they manage to handle imbalanced and moving load

• how the connection response time differ

• other important aspects that will be discussed more briefly are fairness, vulnerabil-
ity, communication overhead and openness.

1.3 Research method

The research method will be experimental validation through simulations.

Chapter 2

The application

This chapter describes the Intelligent Network concept that has been chosen
as the application to be used for evaluation of the multi-agent architectures.

The Intelligent Network concept is chosen as the sample application for empirical ex-
aminations of the multi-agent architectures because of it’s commercial nature that makes
clear why available resources must be fully utilised, and because it visualise problems
that the telecommunication industry is currently facing in the networks of today.

A high-level description of how a service ordering in an Intelligent Network is carried
out can be outlined like this; “When a telephone user order an Intelligent Network service,
the service requests are initiated into the network at a Service Switching Point (SSP). But
an SSP node cannot provide any services on its own, for this purpose it connects to a
Service Control Point (SCP), which are where all the service software resides.” Intelligent
Network services can be used from any telephone that is direct connected to the public
telephone network (in e.g. Sweden), and is equipped with the [*] and [#] buttons.

The main task for an Intelligent Network control algorithm is to perform allocation
of the resources available at the service providing SCPs to the consuming SSPs. In an
article [1] on this subject, Arvidsson et al. argue that the traditional node-based control
of Intelligent Networks are vulnerable and not able to allocate the resources in a way that
is optimal for the whole network, therefore the idea of multi-agent load balancing and
overload control is introduced. The traditional node-based Intelligent Networks typically
use a load control algorithm such as Automatic Call Gapping [6]. This algorithm forces
a minimum time separation between call requests.

As the load in an Intelligent Network is varying, you never want to utilise an Intelli-
gent Network to 100%. Because if you do that, there will be no spare resources to handle
the peaks that lies within the normal variations. When the offered load equals the sys-
tem’s capacity the peaks will be queued (i.e. delayed) and executed later when there is
less than 100% load. To prohibit such behaviour, you better aim to utilise the system at a

3

4 CHAPTER 2. THE APPLICATION

level a bit below the system’s capacity, thus the term target load is introduced. Typically
the target load is set to 90%, which means that the goal of the load control algorithm is to
keep the load of the system at a maximum of 90% of the system’s capacity by rejecting
requests when the offered load grows above the target load.

Chapter 3

The architectures

This chapter contains a walk-through of the four different architectures pro-
posed for load distribution and congestion control

This thesis will concentrate on the four architectures:

1. CA – Centralised Auction

2. HA – Hierarchically Distributed Auctions

3. CLB – Centralised Leaky Bucket

4. MB – Mobile Broker

The architectures are chosen to complement each other with respect to synchronism and
distribution.

• CA and CLB is centralised, while

• HA and MB is distributed.

In the aspect of resource allocation

• CA and HA is synchronised, while

• CLB and MB is asynchronous.

Each SCP have a corresponding Quantifier which is supervising the SCP, keeping track of
its capacity, its current load and status, and try to sell available capacity to the Distributor.
There also exist one Allocator for each SSP node. The Allocators are responsible for
monitoring the experienced load at each SSP, and for reserving/buying the correct amount
of SCP processing resources an SSP node will require.

5

6 CHAPTER 3. THE ARCHITECTURES

SSP

SCP SCP

Quantifier

SSP
... 32

Allocator

Quantifier

Distributor

(Auction)

Allocator

1 ...

1 ...

... 8

Resources bought

Resources sold

by the Allocator

by the Quantifier

Signalling Network

Figure 3.1: Agent interaction in the centralised auction architecture.

In the CA and the CLB architecture there exists one global Distributor, while there
in the HA architecture exists additional intermediate Distributors between the central
Distributor and the Allocators. In the MB architecture, the Quantifiers and Distributors
are replaced by the so-called Brokers that continually travel around and visit each of the
Allocator agents (or a subset), to offer them resources of the corresponding SCP node. In
MB, there exists one Broker for each SCP node.

3.1 Centralised auction

The centralised auction architecture is centralised and synchronous. In the auction archi-
tectures, all SSP nodes maintain a pool of tokens. Each token correspond to an SCP’s
processing of a service request. Tokens are sold to Allocators at the Distributor auctions
on behalf of Quantifiers. The Distributor is located at no specific place but anywhere it
can be reached from the signalling cloud. Quantifiers report to the Distributor how much
processing power its SCP want to sell, and the Distributor perform auctions typically ev-
ery 10 seconds where the SCP processing power are sold to the Allocators which have
been sending in their bids of what they need.

When an SSP accept a service request, a token is removed from the pool of that SSP.
When there are no more tokens in the pool, the SSP cannot accept any further requests.
To avoid running out of tokens too early when the demand is larger than the supply, a
rejection probability is calculated so that the remaining tokens are equally distributed

3.1. CENTRALISED AUCTION 7

over the time from now until the next auction (see percent thinning below). To serve a
request, a direct connection is established between an SSP and an SCP.

The centralised auction architecture originally proposed and implemented by Arvids-
son et. al in [1] maximises profit for the network owner by favouring those services that
gives the higher profit. That means that during overload situations, SSPs have the ability
to reject requests for low profit services while accepting requests for services that gives
a higher profit. If we remove this task of profit optimisation from the central auction, the
main task for the auction is reduced to distribution of SCP processing power according
to the percentage of load each SSP experience.

This claim have been validated by comparing simulations where the existing code
was used with other simulations where the auction algorithm was replaced by another
algorithm that just divides available SCP processing power among the SSPs after their
percentage of experienced load. This second algorithm was introduced to minimise ef-
fects of the phenomenon that shows up at the end of an auction interval when an arbitrary
SSP are out of tokens for service one, but have a few more tokens left for service two.
However unluckily, there only arrives requests for service one, so when the auction in-
terval is ending, the SSP have to throw away unused service two tokens (that could have
been used up if there was only one type of token). This gives that when there is only
one type of tokens, the architecture will carry slightly more load than when there is two.
The phenomenon is most obvious and easiest to study when offered load equals the target
load near the system’s maximum capacity.

Percent thinning

Percent thinning is used to distribute the accepted load evenly over an auction interval,
to prevent that all tokens are spent in the beginning of the interval during an overload
situation. That would mean that all requests would have to be rejected for large coherent
chunks of time, which is unacceptable.

Another problem that occur during overload if we do not use percent thinning is that
SCP nodes will not manage to process all requests that arrive almost simultaneously just
after an auction has been held and the token pools have been refilled. The request will
then be queued and the connection response time will be suffering from extensive delays.

The percent thinning mechanism works by calculating available tokens over expected
number of requests to find out how many percent of the offered requests it can afford to
accept.

There exist two ways of predicting the offered load for the next interval of time. The
more advanced is to apply a machinelearning algorithm on some statistics, for example
the history of previous intervals, to try to recognise patterns or trends. This approach is
more complex to implement and requires more computational resources than the other
method. That is why the simpler approach is used in the simulations. The simpler ap-
proach is to assume that the offered load during next interval will be the same as it was

8 CHAPTER 3. THE ARCHITECTURES

SCP

Quantifier Quantifier

SCP

Quantifier

SCP

Distributor

Central Auction

Intermediate

Auction

SSP

SSP SSP SSP

SSP

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

SSP

SSP SSP

Allocator

Allocator

Intermediate

Auction

SSP

SSP SSP SSP

SSP

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

SSP

SSP SSP

Allocator

Allocator

1 n

Resources sold

2

by the Quantifiers

by the Allocators
Resources bought

1 m

Figure 3.2: The hierarchically distributed auctions (HA) architecture

during the last interval. There exist a trade-off (and a parameter to tune) between the
shorter time interval – the closer to current load situation, and the longer interval – the
smaller becomes the errors inferred by variations in load.

3.2 Hierarchically distributed auctions

The hierarchically distributed auctions architecture is distributed and synchronous.
The main difference between CA and HA is that in the HA there exist intermediate

Distributors between the central main Distributor and the Allocators. We still have the
central Distributor with a global view of the whole systems that makes decisions at equal
quality as in the CA. However, in addition HA adds the ability of making more and faster
decisions at a lower level. HA thereby adds the possibility of a re-balance in a subset

3.3. CENTRALISED LEAKY BUCKET 9

of the network and faster adoption to changes in load as the smaller auctions can be
performed more often than the central one. That the smaller auctions can be performed
more often is true because HA distributes the processing required to carry out the auctions
over several processing nodes, and as the distributed auctions can be located closer to the
Allocators the messages only have to bother the closest subset of the network. Altogether,
this means that the distributed auctions can be held simultaneously in different parts of
the network. However, there is a penalty to run the auctions too often. The more often the
auctions are performed the less load will be carried when the offered load is close to the
target load due to tokens that get discarded (HA uses the same kind of percent thinning
as CA and MB).

Another rather obvious fact is that is true for both of the auction architectures is that
a re-balance cannot be performed at any other time than at the auctions. This is the main
disadvantage of the synchronised architectures compared to the asynchronous.

Percent thinning

An algorithm like percent thinning is required to prevent overload of the processing nodes
right after each auction, when the token pools have been refilled. However, as you divide
the auction interval in even smaller shares, each share the algorithm will be responsible
for will be smaller and some of the responsibility for normalising the load will be trans-
ferred to the distribution of auctions. As the distributed auctions of HA are performed
more often than the central auction in CA, the HA architecture will be less dependent than
CA of a good percent-thinning algorithm to normalise the rate at which each SSP node
will accept requests over the interval between two auctions during an overload situation.

3.3 Centralised leaky bucket

The leaky bucket architecture is centralised and asynchronous.
The leaky bucket architecture1 is named after the metaphor of a leaking bucket, where

the water leaks from the bucket in a constant torrent. The basic idea is that each incoming
request adds to the bucket if there is at lest one slot available. The size of the bucket
imposes an upper bound on the burst size that can be accepted, those requests that do
not find available slots are rejected. The maximum response time of a request will be
proportional to the bucket size.

As the centralised leaky bucket (CLB) architecture is fully centralised, it is informed
about the current load situations in all nodes, therefore this architecture have the best
preconditions to make well-informed decisions.

The Distributor in the CLB architecture is implemented as a finite queue that holds
the SSP service requests and a router that de-queues the requests and forward them to

1Leaky Bucket was first introduced for Asynchronous Transfer Mode (ATM) networks in [4].

10 CHAPTER 3. THE ARCHITECTURES

SCP

SCP

SCPm

3

2

1
SSP

SSP

SSP

SSP

finite queue
router

1

2

n

Centralised Leaky Bucket

Figure 3.3: In the CLB resource allocation is not carried out until the need is spawn from
an incoming service request

the next available SCP at a rate that corresponds to the target load. After the initial
connection, further interaction is accomplished using a direct connection between the
SSP and SCP.

When the finite queue has no more slots available, further service requests are re-
jected. In our specific case, the size of the finite queue in the leaky bucket distributor
is of subordinate importance beside the fact that the queue is finite and fills up during
overload. Instead, the parameter best suited for deciding the size of the queue is the
maximum acceptable response time. Preferably, the size of the queue should be kept so
that the maximum acceptable connection time for a service request is not exceeded. The
time required for accepting a service request during overload is proportional to the queue
length times the time it takes for the distributor to process one request.

An alternative or complementary way to regulate the rejection rate (that sometimes
is used in transaction processing systems such as GSM SMS text messaging systems)
would be to instead of using a finite queue in the Distributor, define a maximum rate at
which service request can be issued from the SSPs. This would work fine for securing
the system against SCP overload, but it would be less flexible as no SSP nodes can have
a higher load even if the overall network load is low.

In the CLB architecture, there is no use for a percent thinning-algorithm like the one
used in the other architectures as the CLB Distributor already makes an optimal thinning.

3.4. MOBILE BROKER 11

3.4 Mobile broker

The MB architecture is distributed and asynchronous.
The MB architecture is the most complex one of the four. In MB each SCP have a

corresponding Broker that continually travels around to a subset of the Allocators to sell
resources. The Broker routes are static and have been set up so that each Allocator is
visited by two different brokers, and so that those two broker-visits are spread in time
(i.e. two brokers do not arrive at the same time). Each Broker route comprehend eight
Allocators, and each Broker route cross every other Broker route at least once every lap.

A different approach would be to use dynamic routes, which probably would cause
more deviations in response time and carried load, but a better ability to distribute uneven
load evenly over all available SCPs. However, this is only theory since dynamic routes
have not yet been examined in simulations.

In order to avoid selling all resources to the first Allocator in the route during an over-
load situation, each Broker keeps track of the total experienced demand at all Allocators
in its route. The broker then calculates the percentage of load at current Allocator from
the quote: the demand at current Allocator over the total demand for all Allocators in the
Broker route. This is done by the Broker in order to find out how much of the resources
that shall be given to the current Allocator. This procedure also makes sure that the Bro-
ker distributes all the processing power of its SCP, i.e. that it do not have spare capacity
left over when the route is completed. A drawback of this approach is that the Broker will
hand out too much bandwidth during the first lap after a sudden increase in the offered
load (as brokers operate by handing out the abstract concept of bandwidth and hence can
not run out of resources).

An additional balancing function that is used in the MB architecture is that each
Allocator try to relieve pressure from its heaviest loaded Broker and move requests to it’s
other Broker in case they are unevenly loaded. The allocator calculates the load of its
Broker from the quotient between the given request (i.e. the experienced demand) and
the received allocation.

12 CHAPTER 3. THE ARCHITECTURES

SCP

SCP

SCP

SCP

Broker

Broker

Broker

Broker

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

Allocator

SCP

Figure 3.4: The Brokers continually travel and visit a subset of the Allocators in purpose
to sell the resources of its corresponding SCP

Position broker1 broker2 broker3 broker4 broker5 broker6 broker7 broker8

1 A - 1 A-13 A-17 A-21 A - 4 A-30 A-32 A-25
2 A - 2 A-14 A-18 A-22 A-10 A-31 A - 6 A-27
3 A - 3 A-15 A-19 A-23 A-26 A-11 A-28 A - 7
4 A - 4 A - 8 A-20 A-24 A-16 A-29 A-12 A-30
5 A - 5 A - 9 A-21 A-25 A-22 A - 1 A-31 A-32
6 A - 6 A-10 A - 2 A-26 A-27 A-17 A-14 A-13
7 A - 7 A-11 A-15 A - 3 A-28 A-23 A-19 A-18
8 A - 8 A-12 A-16 A - 9 A-29 A - 5 A-24 A-20

Table 3.1: The Broker routes used in the simulations. Each Broker route comprehend
eight Allocators and cross every other Broker route at least once every lap. Each Allocator
is visited by two different brokers.

Chapter 4

Simulation – preconditions

This chapter is a description of the specific network configuration that is used
in the simulations. It also holds a description of the attributes the simulations
are supposed to investigate.

4.1 Simulator configuration

4.1.1 General setup issues

The basic network configuration that is used in the simulations are taken from the MARI-
NER Simulation Scenario Handbook1 and consists of 8 SCPs and 32 SSPs connected by
a SS72 network cloud. It is assumed that no messages are lost and that a portion of
the bandwidth have been set aside for the agents’ interaction, so this will not be suffo-
cated during network overloads. Each message sent through the network will experience
a constant delay of five milliseconds. When the offered load is higher than the system
manages to process and the load control algorithm is turned off, the SCPs will queue
requests and process them later. The call holding times are negative exponentially dis-
tributed with a mean of 100 seconds. Service requests arrive according to independent
Poisson processes. The services used in the simulator are set-up to resemble real ser-
vices. The services are described in the MARINER Simulation Scenario Handbook, the
services are:

• Service A, Virtual Private Network

• Service B, Ring back

A simplified figure of the simulated network is shown in figure 4.1 on page 14.
1An extract of the MARINER Simulation Scenario Handbook is attached as appendix A.
2Please refer to [7] for a definition of the SS7 network architecture.

13

14 CHAPTER 4. SIMULATION – PRECONDITIONS

SSPSSPSSP SSP SSP SSP SSP SSP SSPSSP

SCP SCP SCP SCP SCP SCP SCP SCP

1 2 3 4 5 6 7 8 9 32

1 2 3 4 5 6 7 8

SS7 Signalling Network

Figure 4.1: The basic network configuration used in the simulations

4.1.2 Architecture specific issues

All SCPs are identical in respect of processing capacity and software configuration i.e.
they provide the same set of services, they are also equally reachable from all SSPs (i.e.
a message will experience the same delay regardless of which SCP it is sent to). That
all SCP nodes provide the same set of services is a prerequisite for the Mobile Broker
architecture to work. Please refer to table 3.1 on page 12 for the specific broker routes
used in the simulation.

In the HA architecture, Allocator 1-8 is partitioned to intermediate auction 1, Allo-
cator 9-16 into intermediate auction 2, Allocator 17-24 into intermediate auction 3 and
Allocator 25-32 into intermediate auction 4, meaning that a redistribution of resources
between Allocator 1 and Allocator 5, e.g. can be performed at an intermediate auction
while a redistribution between Allocator 1 and Allocator 9 cannot.

The auction interval of the CA architecture is set to 10 seconds, which is also the
time interval between the main auctions in the HA architecture. The intermediate auction
interval in HA is set to 2 seconds, which implies that there are 5 intermediate auctions for
every main auction. The size of the CLB queue is set to 80. The Broker routes in the MB
architecture takes approximately 1.6 seconds to complete, as a Broker spend 0.2 seconds
at each Allocator.

4.2. DESCRIPTION OF THE ATTRIBUTES TO BE INVESTIGATED 15

4.2 Description of the attributes to be investigated

The architectures will be examined and compared according to several important at-
tributes. Those attributes are:

• Utilisation of resources
In this section, the aspect to investigate is how close to the target load the different
architectures manage to carry the load at different conditions in terms of offered
load.

• Load balancing
When all SSPs are offered the same continuous load, how do the architectures differ
in terms of load distribution? We now compare how the resources are consumed
at the individual SCP level by measuring the standard deviation of the carried load
between the SCPs.

• Reactivity
An important attribute of a load control architecture is how fast it manages to adapt
to new load situations, how fast it can re-allocate the resources when there have
been a change in the demand. Two different aspects will be studied:

– Overload control
How will the architectures manage a synchronised instant increase or decrease
in the demand? How fast will the carried load follow the offered load? In case
of a severe increase in the offered load, will the carried load exceed the target
load even for a short while? In case of a drastic drop in the offered load, will
the carried load sink below the offered load even for a short while?

– Balancing of an unequally applied load
In this section the offered load is kept below the target load, so the system
should be able to carry all load offered. The main part of the offered load is
instantly moved from one side of the network to the other. The issue being
investigated is how fast the architectures manage to redistribute the resources
from one part of the network to another.

• Response time
An important measure on the quality of service from the user’s point of view is
how long it takes a service to be connected. E.g, how long before the user gets a
response from the system informing if the request has been accepted or rejected.

• Communication overhead
What constraints do the architectures place on the underlying infrastructure for
communication? How does the amount of bandwidth that has to be reserved for
the agent interaction differ between the architectures?

16 CHAPTER 4. SIMULATION – PRECONDITIONS

• Robustness
Is there any architecture that is more vulnerable than another, or that makes the
Intelligent Network as a whole more vulnerable? In what ways can a certain ar-
chitecture affect the Intelligent Network as a whole in case of a hardware failure in
some part of the network?

• Fairness
Do the architectures treat all involved agents equal, or does any agent become
favoured or disregarded under some circumstance?

• Scalability
Scalability is the aspect of how easy it is to resize the network, especially to add
extra SSP or SCP nodes when the system is in production and cannot be shut down
and reconfigured off-line.

Chapter 5

Simulation – results

This chapter will examine the set of architectures described in chapter 3 in
the domain of intelligent network resource allocation, congestion control and
load distribution presented in chapter 2.

5.1 Utilisation of resources

To figure out how close to the target load the architectures manage to keep the carried
load, simulations that are 20 simulated minutes long have been used. The measurement
was carried out during the last 10 minutes. Because the system needs only about five
minutes to stabilise after a start-up, a delay of ten minutes should be enough.

Seven different simulations were run on each architecture. In the different simula-
tions, the offered load was set to 35%, 70%, 85%, 95%, 105%, 150% and 200% of the
system’s maximum capacity respectively. The simulations were repeated with five dif-
ferent sets of random seeds. It was found that the standard deviation between the same
runs but with different random seeds was about 0.1% on the average for all SCPs on a per
second basis, and never more than 0.3% for an individual SCP.

The unit of measurement “load expressed in percent of the system’s maximum capac-
ity” is also called Erlang, which is the name that will be used throughout the rest of this
chapter. The system’s maximum capacity corresponds to one Erlang.

The result data from these simulations are presented in figure 5.1 on page 18. It shows
that all the architectures manage to carry the load close to the target load (the CLB is in
fact on the minimum of the target and the offered load, which is optimal). The deviations
are largest just around an offered load at 1 Erlang. At this point CA carries the load a
little better than HA and MB. But at severe overload, 2 Erlang in offered load, CA and
MB comes almost as close to the target load as CLB while HA is left alone staying well
below and is not approaching the target, suffering from shorter auction-intervals (which
means more discarded tokens) than CA.

17

18 CHAPTER 5. SIMULATION – RESULTS

0.4

0.5

0.6

0.7

0.8

0.9

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Offered load in Erlangs

Centralised Leaky Bucket (CLB)
Centralised Auction (CA)

Hierarchical Distributed Auctions (HA)
Mobile Broker (MB)

Figure 5.1: Shows how close to the target load the different architectures manage to keep
the carried load during a constant offered load. Target load is set to 0.9 Erlang

There exist several possible ways to trim the HA architecture to carry the load closer
to target. One could for example see to that extra tokens are handed out to compensate
for those that are being discarded. Another way is making the auction intervals adaptive
so they become longer when the offered load is stable and vice versa. However, these
proposals remain to be validated in simulations.

5.2 Load balancing

Using the same simulation runs, we now compare how the resources are consumed at the
individual SCP level by measuring the standard deviation of the carried load between the
SCPs. An average of the load carried during the last simulated second are saved every
simulated second for each SCP throughout the last 10 simulated minutes. Figure 5.2 on
page 19 shows the average standard deviation between the SCPs during 600 simulated
seconds.

Even when the offered load is continuous and stable at a certain level, there are vari-

5.2. LOAD BALANCING 19

2

4

6

8

10

12

14

16

18

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
ta

nd
ar

d
de

vi
at

io
n

of
 C

ar
rie

d
Lo

ad
 in

 P
er

ce
nt

Offered load in Erlangs

Mobile Broker (MB)
Centralised Auction (CA)

Hierarchical Distributed Auctions (HA)
Centralised Leaky Bucket (CLB)

Figure 5.2: The standard deviation of the carried load between the individual SCPs mea-
sured in percent.

ations in the arrival rate, i.e. the time between two consecutive service requests is not
constant. In fact, the time is derived from Poisson processes. The variations in arrival
rate can be smoothed out by having a set of SSPs to select next request from. If an SCP
is only serving one SSP, and that SSP run out of resources, the SCP will get no requests.
The more SSPs an SCP is serving, the smaller becomes the effect when one of the SSPs
runs out of resources.

As the SCPs in the MB architecture only are serving 8 SSPs each, the carried load de-
viates more in MB than in CA and HA where each SCP serve all 32 SSPs. The CLB
architecture always allocate each new request to the SCP that have had the longest idle
time, and thus is optimal.

20 CHAPTER 5. SIMULATION – RESULTS

5.3 Reactivity

5.3.1 Overload control - preconditions

The time it takes before the system can act on changes in demand depends mainly on
if there exists any synchronisation event that must be awaited before a change can take
place or a message be propagated. Hence, asynchronous architectures perform better than
synchronous in the aspect of reactivity.

To find out the difference in how fast the architectures can adapt to changes in the
offered load, an instant increase from 0.35 to 2.0 Erlang was used. The peak occurs
synchronised on all SSPs at time 400 seconds from start and last for another 400 seconds
before it drops back to 0.35 Erlang. The simulation results are visualised in the figures
5.4 to 5.11 on page 21 to 24, and are commented in section 5.3.2.

The expected result

Before taking a look at the actual simulation results, we take a look at what the shape of
the expected simulation results would be like. Because of the architectures unawareness
of history, they make the faulty assumption that the processing required for disconnection
of a service takes place at connection time. This assumption implies that the carried
load will lag behind a time corresponding to the average time between connection and
disconnection of accepted service requests. Only when the disconnection rate equals the
connection rate, the architectures manage to make correct decisions about connection
versus rejection and thereby reach the target load (if the offered load is higher than the
target load).

0.35

0.9

400 800

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

The shape of the ideal result

Figure 5.3: The expected simulation result of the synchronised peak simulation given the
architectures prerequisites and the simulation parameters.

5.3. REACTIVITY 21

0.35

0.9

400 800

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

Centralised auction

Figure 5.4: Centralised auction exposed to a synchronised peak. At time 400, the offered
load is instantly raised from 0.35 Erlang to 2.0 Erlang. At time 800, the offered load drop
back to 0.35 Erlang in an instant. Target load is set to 0.9 Erlang

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

390 400 410 420 430

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

Centralised auction

Figure 5.5: A zoom-in of the same simulation as in figure 5.4. The auction interval is 10
seconds. The points of time when the auctions are held are marked in the figure by the
x-axis grid.

22 CHAPTER 5. SIMULATION – RESULTS

0.35

0.9

400 800

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

Hierarchical distributed auctions

Figure 5.6: The hierarchically distributed auctions exposed to a synchronised peak. At
time 400, the offered load is instantly raised from 0.35 Erlang to 2.0 Erlang. At time 800,
the offered load drop back to 0.35 Erlang in an instant. Target load is set to 0.9 Erlang.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

390 400 410 420 430

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

Hierarchical distributed auctions

Figure 5.7: A zoom-in of the same simulation as in figure 5.6. The main auction interval
is 10 seconds and the sub-auction interval is 2 seconds. The points of time when the main
auctions are are held are marked in the figure by the x-axis grid.

5.3. REACTIVITY 23

0.35

0.9

400 800

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

Centralised leaky bucket

Figure 5.8: Centralised leaky bucket exposed to a synchronised peak. At time 400, the
offered load is instantly raised from 0.35 Erlang to 2.0 Erlang. At time 800, the offered
load drop back to 0.35 Erlang in an instant. Target load is set to 0.9 Erlang.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

390 400 410 420 430

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

Centralised leaky bucket

Figure 5.9: A zoom-in of the same simulation as in figure 5.8. CLB follows the load
almost perfectly.

24 CHAPTER 5. SIMULATION – RESULTS

0.35

0.9

400 800

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

Mobile broker

Figure 5.10: Mobile broker exposed to a synchronised peak. At time 400, the offered
load is instantly raised from 0.35 Erlang to 2.0 Erlang. At time 800, the offered load drop
back to 0.35 Erlang in an instant. Target load is set to 0.9 Erlang.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

390 400 410 420 430

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

Mobile broker

Figure 5.11: A zoom-in of the same simulation as in figure 5.10. The broker routes take
approximately 1.6 seconds to complete.

5.3. REACTIVITY 25

5.3.2 Overload control - comments upon the simulation results

Centralised auctions

This simulation is presented in figure 5.4 and 5.5 on page 21.

CA is the architecture that causes the largest alternation from overload to under-load
(1.0 to 0.7 Erlang) before the carried load stabilise in the second auction interval after the
peak has occurred. The alternation is an effect caused by the combination of the auction
interval time and the percent-thinning algorithm. Just after the offered load has been
raised from 0.35 to 2.0 Erlang, the percent-thinning algorithm bases its computations of
expected offered load on the 0.35 Erlang load conditions from the last time slot of the
preceding auction interval. Therefore, the algorithm will overload the processing nodes
during the first part of current auction interval before it realises it is running short of
tokens using this now too low rejection rate. To avoid running out of tokens the algorithm
will increase the rejection rate during the second part of current interval and in this way
try to get the tokens to last until the next auction is held. Since the algorithm already
has spent too many tokens in the beginning of the interval, we must wait for the token
pools to be refilled at the next auction before the algorithm can have a second chance
and approach the target load.

During the second interval of 2.0 Erlang offered load, the percent thinning algorithm
manages to hold the accepted load close to the target load as the algorithm now has
accurate input data (i.e. the offered load during the closest preceding auction interval is
similar to current interval). Without the percent-thinning algorithm the alternation would
occur repeatedly in every auction interval and be even more severe altering from 1 to 0
Erlang carried load.

Hierarchically distributed auctions

This simulation is presented in figure 5.6 and 5.7 on page 22.

As can be seen in the simulation, the HA architecture adopt faster to a change in
the offered load than the CA architecture. Already in the middle of the second sub-
auction interval the algorithm has stabilised, which is an improvement compared to the
centralised auction architecture. However, some tokens will eventually remain at the end
of each interval and they will be discarded. This discard event is directly proportional
to the number of sub-auctions per main-auction. The HA architecture therefore carries
less than CA during overload situations. In the simulation presented in figure 5.6, 5
sub-auctions per main-auction were held.

As discussed earlier in section 5.1, it is possible to trim HA to carry the load closer to
the target load.

26 CHAPTER 5. SIMULATION – RESULTS

Centralised leaky bucket

This simulation is presented in figure 5.8 and 5.9 on page 23.
Compared to all the other architectures, the CLB carries the load closer to the target

and smoother with less variation and without alternations caused by the architecture itself.

Mobile broker

This simulation is presented in figure 5.10 and 5.11 on page 24.
MB is the architecture that causes the most severe overload when a synchronised peak

occurs. Even though the time needed for a Broker to complete a lap is less than 2 seconds,
and that the brokers give away too much capacity only during their first lap of peak load,
it takes about 5 seconds before the processing SCP nodes manage to finish the queues
that were built up then. The time required for the MB architecture to stabilise is similar
to that of CA. But in MB, when the SCP’s queues are done, the carried load only sinks to
the target load, and MB does not like CA dip deep below the target.

The timing for the Broker routes were chosen and tuned so that the MB architec-
ture would use a similar amount of bandwidth for agent interaction (i.e. communication
overhead) as the CA architecture.

5.3.3 Balancing of an unequally applied load

To study the investigated architectures’ ability to distribute an unequally offered load
evenly over the available processing nodes (SCPs), two different scenarios have been
used. They are described below together with the simulation results.

Scenario 1 – synchronised swap

This simulation is set up as a worst-case scenario for the synchronised (the auction) ar-
chitectures.

From start of simulation half of the SSPs (1-16) offer a load that cause a total system
load at 0.1 Erlang. The other half (SSP 17-32) offer a load that cause a total system load
at 0.7 Erlang. All together, the system is offered a load at 0.8 Erlang, which is below
the target (set to 0.9 Erlang) and therefore should be possible to carry. The system is
unequally offered the load as half of the SSPs are offered a small portion while the other
half of SSPs are offered a rather large portion.

At time 400, the load offered by SSP 1-16 is swapped with the load offered by SSP
17-32. At time 410, the load is swapped back to the original situation again. What is
focused upon in this scenario is how fast the different architectures manage to relocate
the resources from one side of the network to the other. The way the load is offered is
visualised in figure 5.12 on page 27.

5.3. REACTIVITY 27

0

0.2

0.4

0.6

0.8

1

1.2

1.4

360 380 400 420 440

O
ffe

re
d

lo
ad

 in
 E

rla
ng

s

Time

SCP 1-16
SCP 17-32

Average SCP 1-32

Figure 5.12: The way the load is offered in scenario 1 and 2 – synchronised swap.

Why scenario 1 is a worst-case for CA and HA

The SSPs are chosen so that (for the HA architecture) SSP 1-16 are partitioned to inter-
mediate auction 1 and 2, and SSP 17-32 are partitioned to intermediate auction 3 and 4.
That means that all SSPs that belong to the same intermediate auction are always swapped
together. Therefore, there is no possibility for the intermediate auctions to do anything
to regain equilibrium after a swap, as all of the SSPs in each of the intermediate auctions
are facing the same situation. Only the main auction can take any action to balance the
new load situation, which gives that CA and HA should have the same characteristics in
this scenario.

The time for the first swap (400) is chosen to be simultaneous with a main auction to
ensure that there will be no premonition about what is going to happen that the algorithm
can benefit from. The second swap is set to be simultaneous with the following main
auction (at time 410), which means that all statistics that have been collected about the
new load situation are now made useless, and the auction algorithm will fail to distribute
the resources in a way that would work during the next interval.

Why scenario 1 is a difficult case for MB

The broker routes are set up so that Broker 1 and 2 take care of SSP 1-16, which starts
with the smaller load. Each one of SSP 1-16 also have a secondary Broker, all of Broker
3-8 share this task of being the second broker by taking on responsibility for approxi-

28 CHAPTER 5. SIMULATION – RESULTS

mately 2 SSPs each.
The fact that scenario 1 is a difficult case for MB is not caused by the swaps, it is

caused by how the broker routes are set up in combination with how the load is offered.
Scenario 1 is difficult for MB not during the swap (time 400-410), but before time 400
and after time 410 when SSP 1-16 is offered the smaller load. As none of Broker 1 and
2 visit any SSP with a higher load, they cannot carry any other load than the one offered
to SSP 1-16. Because of this, SCP 1 and 2 will carry less load than SCP 3-8, which also
visit SSPs with the higher load.

This scenario demonstrates that when using static broker routes, it will always be
possible to find a load scenario that cannot be balanced. This could be dealt with, for
example by giving each broker route a random extra SSP in each lap, but that would
impact on the performance of the dual balancing mechanisms. Another way could be to
introduce some kind of route permutation, similar to how the concept of permutation is
used in genetic algorithms, but that would make it difficult to prevent that the broker visits
for each SSP do not occur too close to each other in time. In this area, further empirical
studies are probably necessary.

0.2

0.4

0.6

0.8

360 370 380 390 400 410 420 430 440

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

SCP 1
SCP 2
SCP 3
SCP 4
SCP 5
SCP 6
SCP 7
SCP 8

Figure 5.13: The load carried by CLB when scenario 1 is applied. The CLB always
manages to distribute the load optimal.

5.3. REACTIVITY 29

0.2

0.4

0.6

0.8

360 370 380 390 400 410 420 430 440

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

SCP 1
SCP 2
SCP 3
SCP 4
SCP 5
SCP 6
SCP 7
SCP 8

Figure 5.14: The load carried by CA when scenario 1 is applied. The auctions are marked
by the x-axis grid.

0.2

0.4

0.6

0.8

360 370 380 390 400 410 420 430 440

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

SCP 1
SCP 2
SCP 3
SCP 4
SCP 5
SCP 6
SCP 7
SCP 8

Figure 5.15: The load carried by HA when scenario 1 is applied. Despite the reasoning
that the behaviour would be the same for HA as for CA, it turns out that this is not the
case. The carried load after the second swap is improved compared to CA.

30 CHAPTER 5. SIMULATION – RESULTS

0.2

0.4

0.6

0.8

360 370 380 390 400 410 420 430 440

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

Total carried load

Figure 5.16: The total carried load for the MB when scenario 1 is applied. MB manages
to regain balance in the load distribution much faster than CA and HA. Also, note that
the carried load is below what could be carried by MB because two of the Brokers cannot
find the load (before time 400 and after time 410).

0.2

0.4

0.6

0.8

360 370 380 390 400 410 420 430 440

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

SCP 1
SCP 2
SCP 3
SCP 4
SCP 5
SCP 6
SCP 7
SCP 8

Figure 5.17: This is the same simulation as in figure 5.16, but the carried loads are showed
for each SCP individually.

5.3. REACTIVITY 31

Scenario 2 – synchronised swap re-partitioned

The goal of scenario 2 is to visualise the difference between centralised and distributed
architectures. To achieve this (scenario 1 is used as a base) the partitioning of SSPs have
been modified while the other conditions stay the same, i.e. the way the load is offered
to the system is described in figure 5.12 on page 27. In scenario 2, SSPs with uneven
numbers start out by offering the lower load, while evenly numbered SSPs start with the
higher load. In scenario 2, the centralised architectures CLB and CA show the same
characteristics as in scenario 1 while HA is able to reallocate the resources already at the
intermediate auctions. As MB in scenario 2 do not face any difficult case with regard to
the broker routes it is now able to balance the load better than in scenario 1.

0.2

0.4

0.6

0.8

360 370 380 390 400 410 420 430 440

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

SCP 1
SCP 2
SCP 3
SCP 4
SCP 5
SCP 6
SCP 7
SCP 8

Figure 5.18: The load carried by HA when scenario 2 is applied. In contrast to CA which
shows no improvement at all compared to scenario 1, HA performs much better when the
load is offered in a way that makes it possible to re-balance the resources already in the
distributed auctions. HA is now almost as good as MB. (Compare scenario 1 in figure
5.15 on page 29.)

32 CHAPTER 5. SIMULATION – RESULTS

0.2

0.4

0.6

0.8

360 370 380 390 400 410 420 430 440

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

Total carried load

Figure 5.19: The total carried load for the MB when scenario 2 is applied. The time
required for MB to regain balance in the load distribution after the load swap is the same
as in scenario 1. Although, the carried load is now on track, and therefore the drop right
after the first swap is deeper than in scenario 1, as there are no spare resources now ready
to be consumed at SCP 1 and SCP 2. (Compare scenario 1 in figure 5.16 on page 30.)

0.2

0.4

0.6

0.8

360 370 380 390 400 410 420 430 440

C
ar

rie
d

lo
ad

 in
 E

rla
ng

s

Time

SCP 1
SCP 2
SCP 3
SCP 4
SCP 5
SCP 6
SCP 7
SCP 8

Figure 5.20: This is the same simulation as in figure 5.19, but the carried loads are showed
for each SCP individually. The simulation shows that when the loads are offered in a way
that is not a difficult case with regard to the broker routes, MB manage to distribute the
load in a better way. The SCPs that carry less load than the other are serving seven SSPs
from the group that started with the smaller load and only one SSP from the group that
started with the higher load (and vice versa).

5.4. RESPONSE TIME 33

5.3.4 Conclusions regarding reactivity

Two conclusions can be derived from the simulations in section 5.3:

• Asynchronous architectures excel in balancing the load faster than synchronous
architectures.

• Fully distributed architectures (such as MB) can never balance the load better than
centralised architectures. (This statement does not concern the HA architecture
because it is not fully distributed as the central auction is kept.)

5.4 Response time

The response time depends heavily on the load situation at the SCPs. If there is a queue
of requests at the SCPs an incoming request will be delayed, and that means a longer
response time.

As the CLB manages to distribute and balance the load optimally, this architecture
causes no congestion at the SCPs as long as the setting of target load does not exceed 1
Erlang. In addition, as long as the offered load is kept below the target load, the CLB
queue is empty (or decreasing). Therefore, when the offered load is kept below the target
load, the response time of CLB is better than for the other architectures. But as soon as
the offered load grows above target load, the CLB finite queue will fill up quickly as the
size of the CLB queue used in the simulations is rather small compare to SCP processing
capacity (in order to keep down the response time during overload).

The response time for the auction architectures is almost as good as for the CLB
when the offered load is kept below the target load. However, when the offered load
grows above target load, the auction architectures perform better than CLB as they do
not suffer from any central queueing. The only delay that exists in the CA and HA
architectures is (as direct connections are established between SSPs and SCPs) caused
when more than one SSP places a request to the same SCP simultaneously, then one of
those requests must be queued by the SCP. Note that even if an architecture manages
to allocate available resources in an optimal way, congestion can be caused by how the
resources are consumed – and these are two different problems.

The MB architecture have a slightly slower response time than the auction architec-
tures. This is because MB causes a little more congestion at the SCPs than the other
architectures, sometimes the requests come in groups and sometimes there comes no re-
quests for a while. This is also the reason why the MB has a larger standard deviation in
the carried load in figure 5.2 on page 19.

Despite what it looks like in figure 5.21, HA does not have a better response time than
CA – they do in fact have the same response time when they carry the same load. This
is demonstrated in figure 5.22 where the response time is plotted against the carried load

34 CHAPTER 5. SIMULATION – RESULTS

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 c
on

ne
ct

io
n

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Offered load in Erlangs

Centralised Auction (CA)
Centralised Leaky Bucket (CLB)

Hierarchical Distributed Auctions (HA)
Mobile Broker (MB)

Figure 5.21: Average connection response time at different offered load situations. Note
the increase in response time for CLB when it passes target load at 0.9 Erlang.

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
on

ne
ct

io
n

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Carried load in Erlangs

Mobile Broker (MB)
Centralised Auction (CA)

Hierarchical Distributed Auctions (HA)
Centralised Leaky Bucket (CLB)

Figure 5.22: When the response time is plotted against the carried load instead of the
offered load, it becomes clear that CA and HA have the same response time when they
carry the same load.

5.5. COMMUNICATION OVERHEAD 35

instead of the offered load. The reason why HA carries less load than CA is explained in
section 5.1 on page 18.

5.5 Communication overhead

This section is focused on the communication overhead produced by the allocation mech-
anisms only, no regard taken to the overhead that occur when the resources are consumed
(in fact, this is the same for all four architectures).

Besides partitioning of intermediate auctions, overlap of broker routes and number
of Allocators in a broker route, the main factor that has impact on the communication
overhead is the size of time intervals. For CA and HA we have the main auction interval,
and for HA also the sub auction interval. The number of agent interaction messages in CA
and HA differ by a constant, proportional to the number of sub-intervals per main-interval
and the number of Allocators in each sub auction. But measured as required bandwidth
instead of as number of messages, both HA and CA cause a very similar communication
overhead. The two different ways to consider communication overhead will be explained
below.

In all the three architectures (CA, HA and MB) the communication overhead is pro-
portional to the described configuration issues only. Then we have the CLB architecture,
where the allocation is carried out in-line with each connection request rather than on a
separate allocation level. That means that for CLB the communication overhead caused
by the allocation is proportional to the number of connection requests, the offered load.
We could argue that the communication overhead of CLB is also depending on whether
the offered load is below or above the target load, because when the offered load raises
over the target, the central distributor must tell the requesting SSP that the request has
been denied. But in our implementation it turned out that the same communication over-
head is required to tell an SSP that a request has been denied as is required to tell the SSP
which SCP should be used to perform the request.

There exists two different ways to consider the communication overhead. One is
based on the number of sent messages and the other on required bandwidth. The auction
architectures place a more severe constraint on the underlying messaging infrastructure
when the required bandwidth is considered, because all messaging takes place just before
each auction when the bids are sent in, and just after each auction when the allocations
are sent out. Besides that, no message with regard to allocation is sent by the auction
architectures, the message channel is mostly idle.

The CLB and MB architectures distribute their messaging over time, so from their
point of view it is better to consider the bandwidth. They place a lesser constraint on the
bandwidth than on the number of messages.

36 CHAPTER 5. SIMULATION – RESULTS

70

75

80

85

90

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
eq

ui
re

d
ba

nd
w

id
th

 (
m

es
sa

ge
s

/ s
ec

on
d)

Offered load in Erlangs

Hierarchical Distributed Auctions (HA)
Centralised Auction (CA)

Mobile Broker (MB)

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
eq

ui
re

d
ba

nd
w

id
th

 (
m

es
sa

ge
s

/ s
ec

on
d)

Offered load in Erlangs

Centralised Leaky Bucket (CLB)

Figure 5.23: The communication overhead caused by allocation for the different archi-
tectures respectively.

5.6 Robustness

In this aspect one architecture stands out as the most vulnerable one, the CLB. The other
architectures can be configured to assume the same allocation as in last auction in case
of a failure in an auction node, or from last broker in case of a failure in a broker. In that
way, a stable load that does not require the network to re-allocate the resources can be
carried until the problem is repaired. But in the CLB architecture, not even one request
can be connected in case of a failure in the central node. Some examples:

In case of a failure in the central resource allocation agent:

• CA - can perform no reallocation of resources, whereas a stable load can be carried.

• HA - partial re-allocation can be performed within intermediate auctions. Hence
HA may carry a changing load a little better than CA as it can adapt to some
changes in the offered load.

• MB - this architecture has no central agent.

• CLB - immediate shutdown. No allocation can be carried out, and no new service
request can be accepted.

In case of a failure in an intermediate distributor (ID):

• CA - this architecture has no intermediate distributor

• HA - no re-allocation can be performed between, to or from the participants of the
auction held by the failing ID. Participants to the failing ID can carry the same load

5.7. FAIRNESS 37

as they did before the ID failed. The other parts of the network continue as usual
but with the difference that the central agent cannot re-allocate the resources that is
stuck under the failing ID.

• MB - No re-allocation can be performed by the failing broker, whereas the other
brokers continue to operate as usual.

• CLB - this architecture has no ID.

As a rule you can say that the more centralised an architecture is, the more vulnerable
it becomes, while a more decentralised architecture will only suffer from a partial impact
in case of a node failure.

5.7 Fairness

The auction architectures are fair in the sense that they do not disregard any individual
Allocator/SSP pair, as long as the load does not change too much between two successive
intervals.1 Under normal circumstances, if an SSP node experiences 10 percent of the
total demand, it will get a share corresponding to 10 percent of the network resources.
The unfairness that can occur is caused by the delay imposed by the synchronisation
events, the auctions. For example, when an SSP node experienced 30 percent of the total
load in the current interval but only had 10 percent in the preceding interval, this SSP
will have only 10 percent of the resources even though it experiences 30 percent of the
demand in the current interval.

The CLB finite queue that operates in a FCFS 2 manner, does not guarantee any
fairness. It will always reject bursts that arrive faster than they can be processed if the
queue is full, or if the burst holds more requests than there will be vacant slots in the
queue. But under normal operation SSPs experience CLB as fair, as it is quite random
which requests that will be rejected (or during overload, which requests that will happen
to arrive when there is a free slot).

The mobile broker architecture is fair if the brokers use dynamic routes, but if the
routes are fixed, a node placed after another node with high variations in load will run a
higher risk to run out of resources.

5.8 Scalability

All of the architectures can be said to be open in the sense that it is possible to add
or remove SSP/SCP nodes to/from the network. If the architecture is synchronised or

1See in figure 5.14 on page 29 how CA fails to deliver resources to those SSPs that experience the load
during time 400-420

2FCFS; first come – first served

38 CHAPTER 5. SIMULATION – RESULTS

asynchronous has no impact on this attribute. However, if the architecture is centralised
or distributed does have some significance. At a first glance you may think that in a
distributed architecture, addition of another network node will be an easier task because
only the local part of the network needs to be concerned. But from a global view, addition
of new participants in subparts of the network could cause unbalance in the network.
Therefore, if the quality of the network allocations shall be preserved, addition of new
network nodes is an easier task in centralised architectures.

Chapter 6

Conclusion

Four multi-agent architectures proposed for managing utilisation levels in distributed
computing have been examined, evaluated and compared to each other. It has been shown
that all architectures are feasible and manage to comply with the requirements imposed
by the Intelligent Network domain. No architecture excels in all aspects, each has its own
pros and cons. Some highlights of found differences are presented here:

In section 5.1 Utilisation of resources, it was found that all architectures perform
very similar. Only HA stands out by carrying less load than the others, especially during
overload. However, that could be compensated for, e.g. by handing out extra tokens
corresponding to the amount that gets discarded (i.e, by increasing the target load).

Two important findings were reported in section 5.3.3 Balancing of an unequally ap-
plied load. One (that is not possible to find a work-around for) is that asynchronous
architectures excel in balancing the load faster than synchronous architectures. The other
that distributed architectures cannot balance the load better than centralised architectures.
This points at a centralised and asynchronous architecture being the best solution. How-
ever, in section 5.6 Robustness, it is found that the centralised and asynchronous architec-
ture CLB is the only architecture that features a single point of failure.1 In addition it is
settled in section 5.5 Communication overhead, that the CLB impose severe constraints
on the underlying communication infrastructure as all requests must pass through a single
central node and the communication overhead grows linear with the offered load. In a
network of a realistic production scale, it will be hard to find the hardware fast enough to
process all requests, the central node of the CLB architecture will clearly be a bottleneck
of the system.

1“This is a single element of hardware or software which, if it fails, brings down the entire computer
system. When dealing with high availability, single points of failure are obviously highly undesirable.”
Pfister [5], page 393

39

40 CHAPTER 6. CONCLUSION

Future work

One of the things that remain to be done is to find out if it is possible to make the syn-
chronous auction architectures better balance and carry the load by making them semi-
synchronous/adaptive. This may be done by decreasing the synchronisation time interval
during acceleration or retardation in the offered load.

For the MB architecture the concept of dynamic broker routes need further investi-
gation as the load balancing of MB is not perfect and needs some improvement, and as
static routing tables are hard to maintain.

References

[1] Å. Arvidsson, B. Jennings, L. Angelin, and M. Svensson. On the use of agent technol-
ogy for IN load control. In 16th International Teletraffic Congress. Elsevier Science,
1999.

[2] B. Carlsson, P. Davidsson, S.J. Johansson, and M. Ohlin. Using mobile agents for IN

load control. In Proceedings of Intelligent Networks ’2000. IEEE, 2000.

[3] S.J. Johansson, P. Davidsson, and B. Carlsson. Coordination models for dynamic
resource allocation. In A. Porto and G.-C. Roman, editors, Coordination Languages
and Models, number 1906 in Lecture notes in computer science, pages 182–197.
Springer Verlag, 2000. Proceedings of the 4th International Conference on Coordi-
nation.

[4] Turner J.S. New directions in communications (or which way to the information age
? IEEE Communications Magazin, October 1986.

[5] Gregory F. Pfister. In search of clusters. Prentice Hall, second edition, 1998.

[6] D. E. Smith. Ensuring robust call throughput and fairness for scp overload controls.
IEEE/ACM Transactions on Networking, 3:538–548, 1995.

[7] The International Engineering Consortium (IEC). Definition of signalling system 7.
http://www.iec.org/online/tutorials/ss7/, 2002.

[8] The International Engineering Consortium (IEC). Intelligent network definition.
http://www.iec.org/online/tutorials/in/index.html, 2002.

41

Appendix A

Extract of MARINER Simulation
Handbook, 1999

Editors: Åke Arvidsson, akear@itm.bth.se
Brendan Jennings, brendan.jennings@teltec.dcu.ie
Javier

A.1 Service Specifications

Some assumptions:

• Service users never abandon ongoing service sessions, thus it is not necessary to
implement the signalling required for premature session termination.

• Processing requirements remain constant for a particular signal over all sessions of
that service type.

A.1.1 Service A: Virtual Private Network

Virtual Private Network services create a logical sub-network spanning a single or multi-
ple IN network domains which appears to a specific group of users as a private network,
providing the types of services normally associated with private exchanges. In this sce-
nario all calls are controlled by an SCP, which provides facilities such as number trans-
lation and call monitoring. In the VPN service to be modelled on the MARINER trial
platform, both the calling and the called parties are associated with the same SSP. Figure
A.1 presents an MSC for a successful session of this service.
The total number of instructions carried out at each network element are as follows:

43

44 APPENDIX A. EXTRACT OF MARINER SIMULATION HANDBOOK, 1999

sA9 (Release Call)

sA8 (Call Terminated)

sA6 (Indicate Answer)

sA7 (Continue)

sA5 (Ringing)

sA4 (Connect)

sA1 (Service request)

sA2 (Query for a Number)

sA3 (Destination Number)

100000

30000

20000

15000

20000

15000

20000

20000

15000

20000

15000

20000

12500

12500

20000

12500

20000

SSP SCP SDP

User Interaction A2

User Interaction A1

Figure A.1: Service A (VPN) MSC. The numbers are the number of instructions carried
out when the signals passes through the processors.

SSP: 97,500 instructions
SCP: 240,000 instructions
IP: 0 instructions
SDP: 50,000 instructions

The duration of user interaction A1 (Phone ringing) is to be drawn separately for each
service session from a negative exponential distribution with a mean of 5 seconds.

The duration of user interaction A2 (Conversation) is to be drawn separately for each
service session from a negative exponential distribution with a mean of 100 seconds.

A.1. SERVICE SPECIFICATIONS 45

SSP SCP IP

sB4 (Play Announcement)

sB1 (Service Request)

sB2 (Connected to IP)

sB3 (Connected)

User Interaction B1

sB5 (Confirmation)

sB6 (Monitor callee´s call)

User Interaction B2

sB7 (Call Completed)

sB8 (Connected to Callee)

sB8 (Report Callee Answer)

User Interaction B3

sB9 (Indicate Callee Answer)

sB11 (Report Caller Answer)

sB10 (Connect to Caller)

User Interaction B4

sB12 (Indicate Caller Answer)

sB13 (Continue to Caller)

sB14 (Continue to Callee)

0 70000

20000

20000

12500

12500

15000 40000

15000 15000

2000025000

12500 20000

20000 15000

10000 10000

12500 20000

20000 15000

10000 10000

12500 20000

20000 15000

20000 15000

Figure A.2: Service B (Ringback) MSC

46 APPENDIX A. EXTRACT OF MARINER SIMULATION HANDBOOK, 1999

A.1.2 Service B: Ringback

Ringback service allow a calling party, upon receipt of an engaged tone for a specific
called party, to request that a call be automatically initiated to that callee once his/her
current call has terminated. To realise this service the SCP signals the SSP to report when
the callee’s current call terminates, after which it signals the SSP to initiate a call between
the caller and callee. This behaviour is illustrated by the MSC shown in figure A.2.
The total number of instructions carried out at each network element are as follows:

SSP: 187,500 instructions
SCP: 300,000 instructions
IP: 55,000 instructions
SDP: 0 instructions

The duration of user interaction B1 (Announcement) is a constant value of 5 seconds.

The duration of user interaction B2 (Ongoing conversation) is to be drawn separately for
each service session from a negative exponential distribution with a mean of 50 seconds.

The duration of user interaction B3 (Callee phone ringing) is to be drawn separately for
each service session from a negative exponential distribution with a mean of 5 seconds.

The duration of user interaction B4 (Caller phone ringing) is to be drawn separately for
each service session from a negative exponential distribution with a mean of 5 seconds.

A.2 Network and node specification

The basic network topology to be supported by the simulations consists of 8 SCPs and
32 SSPs, connected by a SS7 network cloud. No packets are lost in the SS7 network and
messages traversing it are subjected to a delay of 5 ms.

All SCPs have identical hardware and software configurations and support all ser-
vices. The processing rate is 56*106 instructions per second and the nodes are supposed
to operate at a load of about 0.35 Erlang under normal conditions. The targeted maximum
load for an SCP is 0.90 Erlang.

Any delay at SSPs is related to processing only but no waiting take place. The rate of
the SSP processor is the same as for the SCP. Note that from a model point of view, there
are infinitely many processors at the SSP.

