

Entegrity® AssureAccess®

Java™ Standards

This paper provides an overview of current Java™ standards relating to
authorization and their limitations, and discusses some new approaches to Java
authorization.

Entegrity Solutions® Whitepaper

The information contained in this document is subject to change without notice.

 Table of Contents

Executive Summary ... 3

Introduction... 5

Java Authorization.. 6
J2SE Authorization.. 7
JAAS ... 9
J2EE Authorization.. 11

JSR 115.. 14
New Permissions .. 14
Limitations ... 14

AssureAccess JSP Tag Library .. 15

Universal Java Plug-In ... 15

Summary .. 15

About Entegrity Solutions ... 16
Entegrity Solutions Offices .. 16

Executive Summary
Entegrity® AssureAccess® is an industry leading access management product, which provides
a rich set of authorization services in a variety of application server environments. Entegrity is
strongly committed to standards and has always supported relevant industry standards in all of
its products. AssureAccess is implemented entirely in Java and targets Java server
environments, such as Servlets, Java Server Pages and Enterprise Java Beans (EJB) for delivery
of its services. Yet AssureAccess, like its competitors, does not provide implementations of
major Java authorization standards, such as the Java Authentication and Authorization Service
(JAAS) or the J2SE permissions model.

A complete explanation of why this is the case requires a detailed analysis of the relevant
standards. This paper provides just such a point-by-point description of the existing Java
Authorization standards. In summary the reasons boil down to two, one or both of which apply
in each case.

1. The standard does not specify in sufficient detail how it can be used in a server. There is
no explicit provision for the identity to reflect the user making a remote request.

2. The standard can only be implemented by a vendor providing a complete application
server, not by an independent security provider.

Java provides a rich set of security standards. These include cryptography services,
authentication methods and authorization based on the origin of the code being executed. This
paper concentrates on authorization services that are based on user identity or network
connection characteristics, as these are the services relevant to access management. Even with
this narrowed focus, there are four major models to discuss: J2SE, JAAS, Servlet and EJB. The
discussion is simplified by the fact that these models can be presented cumulatively. J2SE
defines a based set of classes and methods, which the other three models are consistent with,
but specify additional details.

The cornerstone of the J2SE authorization model is the permission class. A permission object is a
way of recording the right to perform some action in a Java environment. By extending the
permission class in various ways it is possible to obtain considerable flexibility in the semantics
of permissions and the relationship between more general and more specific capabilities.
However, the J2SE model does not specify how the identity of a remote user is represented, in
order to make access decisions.

JAAS defines a model of client-side authentication that allows a user to authenticate and retain
credentials that apply to multiple environments. A subject class is defined to hold the principals
and credentials associated with the various authentications. In order to access different
applications, the appropriate principal is presented. Unfortunately, there is no way to use this
scheme as a server-side pluggable authentication system without providing the entire
application server or using a scheme defined by a particular application server vendor. The
authorization component of JAAS is now identical to J2SE and suffers the same limitations.

The J2EE environment consists of the Servlet (and JSB) environment and the EJB environment.
Both use Deployment Descriptors to define the semantics of permissions. In Servlet,
permissions are mapped to URLs. In EJB, permissions are mapped to Bean methods. Servlet
also supports controls based on the security properties of the network connection and the use of
a request filter, which can be used for various purposes, including security. J2EE does

 Page 3 of 16

encompass the notion if identifying the remote user’s identity, but the means of making that
identity available for access control is left to the application server vendor. AssureAccess 2.0
makes use of the Servlet filter to apply policy controls in a manner similar to the filters in Web
servers.

Recognizing the limitations of the various Java authorization models, Entegrity worked through
the Java Community Process, beginning in 2000 to develop a standard that would allow access
management vendors to plug in to the Java environment. The intention was to preserve the
strengths of the Java models and allow competition based on the unique characteristics of
distinct security products. This effort led to JSR 115, which represents the combined efforts of
application server vendors, access management vendors, systems integrators and Sun™.
However, JSR 115 will not be available in products for some time and it may prove too complex
for customers to use.

Entegrity has therefore incorporated into AssureAccess, two further methods of performing
access control in a Java server environment in addition to using the EAA API directly. The first
is a library of JSP Tags, which both simplify development and reduce vendor lock-in a JSP
environment. The second is the revolutionary Universal Java Plug-in, based on Tangosol
technology, which provides access to the full power of the EAA dynamic policy capabilities,
with no programming at all. Once an administrator has identified the methods to be protected,
Tangosol automatically inserts the required controls. Because no programming is required, time
and money are saved, which customers can better apply to application functionality. The
elimination of programming also means that customers are not required to invest in a vendor-
specific API.

 Page 4 of 16

Introduction
 This paper discusses methods of performing authorization on Java, with particular emphasis
on authorization within servers of requests made by remote users. This is the type of
authorization provided by Entegrity AssureAccess and other access management products. In
distributed environments, it is difficult to protect resources on client systems. Therefore the
general practice is to concentrate them in servers. Authorization in non-server contexts tends to
be useful in two cases: applets and imbedded systems where the OS does not provide access
control.

Java provides a large number of security related services in its standard APIs. One such set of
classes and methods is called the Java Cryptography Extension (JCE). It provides low-level
cryptographic functions that can be used in a variety of ways. These capabilities are not
discussed in this paper.

Java also supports a variety of popular authentication methods. These include
username/password, PKI and Kerberos. Facilities are also provided for extension to cover other
methods. This paper only discusses the aspects of authentication that directly relate to
authorization.

Java provides a rich set of authorization APIs. While they share certain common elements, there
are at least four distinct variants. Each applies in different environments. Unfortunately each
also has limitations to it use.

The initial Java security model only distinguished between local (installed) and remote
(downloaded) classes. Remote methods were very limited in the functions they could perform.
This model was later extended in two dimensions. First, remote code was distinguished by
where it was downloaded from and who, if anyone, had signed it. Second, a much finer degree
of control was introduced, depending on the code source. Specific operations could be allowed
or prohibited.

The ability to make access control decisions based on the properties of the local or remote user
was also introduced. The current models allow decisions to be made based on both code-source
and user, but in practice usually only one or the other is used. With Applets, the user is trusted
and the system is being protected from hostile code. In installed-code environments, the code is
trusted and the goal typically is to differentiate the capabilities of different users.

Since the focus of this paper is server-based authorization, the facilities based on code source
will not be discussed. Note that the remaining capabilities are based exclusively on user
permissions that have been granted and do not consider factors such as date/time, network
location, or application parameters. In this respect they are essentially equivalent to Access
Control Lists (ACLs) in functionality. The Servlet environment also specifies access control
based on the security properties of the communications channel, however this feature is not
present in the other models.

Most of the complexity in the Java authorization models comes from two general requirements.
First, it is necessary to allow application components to be deployed in different environments
in conjunction with other components that may have been developed independently. This
requirement is met by introducing various levels of indirection into the models. For example,
EJB applications use role references, which can be mapped at deployment time to specific roles,

 Page 5 of 16

thus avoiding potential name conflicts. The use of permissions to map between identities and
actual resources is another example.

The other general requirement is the need to allow application developers to protect resources
that may have different properties from those provided in the standard libraries. The
mechanism for doing this is to create new Permission classes.

This paper begins by describing the current authorization models. For each, the key classes and
methods are described. Then the limitations to the specification are described. The paper then
describes the approach being taken by JSR115 to eliminate some of the restrictions of the current
specifications. Finally, the paper describes two approaches to the problem taken in
AssureAccess. While these approaches are not a part of any Java specification, they do enable
the full power of the AssureAccess dynamic policy model while not locking the customer into
Entegrity or any other vendor.

Java Authorization
The Java authorization standards are not written with the idea that there is an access
management provider distinct from the container provider. In a number of areas, the standards
only specify the APIs visible to applications and their semantics, but key aspects of the
implementation are left up to the application server vendor who implements the container. This
means an Access Management vendor, like Entegrity who does not, as a matter of business
strategy, wish to provide an application server faces several obstacles in implementing these
specifications.

First, the security vendor is dependant on the application vendor to implement the necessary
mechanisms and to make the information about how they work available. Even if the
application server vendors are willing to do this, most likely each will do it in a different way.
This means the security vendor will be forced to provide a distinct implementation for each
supported application server. It also means that a security vendor will only provide
implementations for a few application servers, based on perceived demand. This will tend to
create an additional barrier to entry to newer and smaller application server vendors.

This situation is illustrated by the current support by various application servers by
AssureAccess. We have close integration with BEA, some integration with Borland and no
product-specific integration with others, such as IBM. This is a consequence of the amount of
information the vendors have provided about the implementation details not specified by Java
standards.

It might be thought that application server vendors would suppress this information to avoid
competition from security vendors. However, the general feeling among application server
vendors is that they are required to provide a large number of complex services as a part of
their product. It is not possible for them to maintain expertise in all areas. Security is a complex
field that the access management vendors focus on exclusively. The ability of an application
server vendor to exclude competition from security vendors is offset by the disadvantage of an
application server competitor providing integration with a superior third party security
product. This view is supported by the strong participation in the JSR 115 expert group by key
application server vendors and key access management vendors.

There are many legitimate reasons why application server vendors do not wish to document
their product’s internal mechanisms. They may not wish to expose their technology to other

 Page 6 of 16

application server vendors. They may wish to maintain the flexibility to change their
implementation in the future. They may simply wish to avoid the cost of creating
documentation in a form suitable for external publication.

The next sections of this document describe the four Java authorization models. Only the key
classes and methods of each are presented. Many additional details are required for a
comprehensive understanding of all the possible conditions of use. The models are cumulative
in the sense that the J2SE model is basic and the other three models build on it. Keep in mind
that the behaviour described here is in addition to the code-base checks mentioned previously.

J2SE Authorization
The J2SE authorization model is in the package java.security. These are the most important
classes.

Permissions
The Permission class is the cornerstone all the Java authorization models. A Permission is a
way or recording the right to access some resource or set of resources. By defining new sub-
classes, it is possible to specify the protection of different kinds of resources with different
characteristics.

The Permission does not access the resource, it simply is used to keep track of who is allowed
to do what. Users can be granted sets of permissions and code that needs to make access control
decisions can make queries to determine if some particular Permission has been granted.

A Permission usually has a Name, which can correspond to something fairly specific, like a file
name, or something more abstract like modifyThread. In some classes, like FilePermission, the
name can represent a wildcard. In contrast, the AllPermission class does not have a name. The
name is set by the constructor and can be accessed via the getName method.

Permissions can also have an Action. This can be something abstract, like read or write or it can
refer to something concrete such as a method name or protocol verb. Action is also set by the
constructor and accessed via the getAction method.

When an access control decision is to be made the procedure is to create a Permission of the
appropriate type, name and action. This permission is then passed to the implies method of
some permission or set of permissions that has been granted. The implies method determines if
the permission it encapsulates implies the passed permission and returns true or false. In the
simplest case, this might be a check to see if they are the same, i.e. that the Names and Actions
match. However, more complex processing is possible. For example, if the granted permission
has a wildcarded name, the implies method would determine if the passed permission’s name
matched the wildcard. Another example would be a classification hierarchy, where the
permission to read Top Secret documents implies the ability to read Secret and Confidential
documents.

The package also contains four sub-classes of permission. AllPermission is like Root. Its
implies permission always returns true. In other words, it implies all other permissions.
BasicPermission is a class that only has a Name, not an Action. SecurityPermission is a sub-
class of BasicPermission that is used to control access to critical security functions.

Normally Permissions are not used individually. A PermissionCollection is a set that contains a
number of permissions of the same class. The Permissions object is a set of

 Page 7 of 16

PermissionCollection objects, which therefore can be of different classes. Both implement the
same three key methods. The add method adds a permission. The element method allows the
items to be iterated. The implies method invokes the implies methods of the Permission objects
that are encapsulated and relays the result.

These objects can be used in a variety of ways to keep track of what is available in a security
domain, what has been granted to a user or what is required for some set of operations.

Policy
The J2SE security model specifies a single Policy object that encapsulates all the current
information relating to permissions. The reference implementation reads information about
permissions from a text file, however it is envisioned that other implementations would use
LDAP or some other repository.

The Policy object can be queried about available permissions by means of the getPermissions
method. Access control checking can be done by invocating the implies method, which in turn
invokes the implies methods of all the encapsulated permission containers. The Policy object
also implements a refresh method with unspecified semantics. The intent is that the policy
object will update its contents, if possible, when it is called.

AccessController
An AccessController object is a machine for making access control decisions. It encapsulates the
principal identity of the current user and all the granted permissions. By creating an
appropriately named permission of the correct class and calling the checkPermission class
method, a piece of code can decide whether or not to allow some operation. The current state of
the AccessController can be preserved in an AccessControlContext object by invocating the
getContext method. This is useful when the thread of execution transitions to a different
principal or code base. The saved context can be restored later. It is also possible to invoke the
checkPermissions method directly on an AccessControlContext.

ProtectionDomain
A ProtectionDomain is intended to encapsulate the properties of a principal. It can also be
associated with a set of classes with the same code base and granted the same permissions. The
getPermission method is used to obtain all the encapsulated permissions. The implies method
allows some specified permission to be checked against the permissions within the
ProtectionDomain.

Limitations
The most important thing to understand about the principal-based aspect of the J2SE
authorization model is that it does not specify the means for a remote user’s identity to be
represented. But in a server, it is the remote identity that is needed to make access control
decisions. For a server process, the local identity would typically be some kind of special
administrator account and not appropriate for deciding if access should be allowed.

A further limitation of the model is that many of the details of how principals come to be
represented in AccessController objects and objects are unspecified. Each application server
provider is free to use any ProtectionaDomain implementation they choose. Also the method

 Page 8 of 16

for propagating remote identity and making it available for access control decisions is not fully
specified. If it is done at all the means is proprietary.

For these reasons it is not feasible for an independent access management product to provide
server authorization by means of the J2SE authorization model.

JAAS

Client System

Applications

Kerberos

Credentials

Web

Credentials

NTLM

Credentials

Client System

Applications

Kerberos

Credentials

Web

Credentials

NTLM

Credentials

AuthN
Server

App
Server

AuthN
Server

App
Server

AuthN
Server

App
Server

AuthN
Server

App
Server

AuthN
Server

App
Server

AuthN
Server

App
Server

Kerberos Realm

Web Environment

NT Domain

Figure 1: Client-based Single Sign-On

The Java Authentication and Authorization Service (JAAS) was developed independently of the
J2SE model, using some of the same concepts. It was primarily intended to enable a pluggable
authentication service which implements a client-side form of single signon. What this means is
that a client system is able to login to multiple authentication systems and preserve the
identities or credentials associated with each. The client then uses the appropriate information
when making network requests to different servers. This is hidden from the user, thus
providing a form of single signon. JAAS also allows an administrator to specify that one of
several authentications must succeed or that two or more must all succeed. By definition, this
type of capability requires a “heavy client” system to support this functionality. This
architecture is illustrated in the diagram below.

In contrast, access management systems provide server-based single sign-on. In this
environment, a standard desktop, such as a web browser is used. The user first communicates
with some authentication service, which may support multiple methods of authentication and
multiple user repositories. After authenticating, the client is provided with information it can

 Page 9 of 16

use to access application servers, such as a cookie or Kerberos ticket. By presenting this
information, the client can prove it has successfully authenticated. In this model, a heavy client
is not required. The servers are responsible for authentication and single sign-on rather than the
client. This architecture is illustrated in Figure 2 below.

In J2SE 1.3, JAAS was included as an optional component, with a Policy object that replaced the
standard one. In J2SE 1.4, JAAS is a standard component (although the package names were not
changed), but the JAAS Policy object has been deprecated in favor of the J2SE one.

Client System

Browser

Single Signon

Credentials

Authentication
Server

Application
Server

Application
Server

Application
Server

Application
Server

User Repositories

Figure 2: Server-based Single Sign-On

Pluggable Authentication
JAAS Authentication is contained in three packages. The javax.security.auth package contains
the Subject class. A Subject can contain a number of principals as well as a number of
credentials. Credentials can be public, such as a username or Kerberos ticket or private, such as
a secret key or password. The Subject class doAs method allows code to be executed under a
different identity. This is an example of when an AccessControlContext is used to preserve the
previous information. The getPrincipals method can be used to obtain the principals contained
in a particular Subject object.

 There is also a SubjectDomainCombiner class that updates the ProtectionDomain with the
Subject’s Permissions.

 Page 10 of 16

The javax.security.auth.login package contains the LoginContext class. It is responsible for
finding all the login modules, (based on configuration info) calling each in turn and running the
two phase commit protocol based on the success or failure of each authentication and the
specified logic. It implements the login, logout and getSubject methods, which do the obvious
things.

It is intended that the javax.security.auth.spi package be provided by an independent vendor of
authentication software. Each LoginModule class must implement authentication via the login
method, which is called in the first phase and the commit and abort methods, one of which will
be called in the second phase. It also implements the logout method.

In addition to these primary packages, the javax.security.auth.callback package provides
definitions for classes used to callback from a login module to prompt the user for inputs or
report errors. The javax.security.auth.kerberos and javax.security.auth.x500 packages provide
key elements of the implementation of Kerberos and PKI login modules, respectively.

Authorization
The original JAAS Policy object, which drives the authorization process, has been deprecated.
The J2SE Policy object is used instead. The Policy object is called with an implicit access control
context or protection domain, each of which has associated principals.
Limitations
Like the J2SE model, JAAS is intended to make decisions based on the identity of the local user.
There is no explicit provision for representing the identity of a remote caller. If the
authentication is performed at the client system, there is no specified means for conveying this
information. Therefore a security provider is dependant on the application server vendors to
provide this capability and document its internal mechanisms.

In principal the JAAS authentication API could be remoted, but this is not feasible for a number
of reasons:

• The security vendor would be required to provide a heavy client, an approach the
market has rejected,

• There would still be no way to associate the subject with application requests,

• While a login proxy scheme could work for username/password, it is not possible for
protocols such as Kerberos or SSL, and

• The client would need the keys and certificates to implement SSL just to protect the RMI
calls.

The authorization portion of JAAS is now the same as J2SE, so exactly the same limitations
apply to each of them.

J2EE Authorization
The J2EE security models do relate to server environments, specifically to Enterprise Java Beans
(EJB) and Servlet, which includes Java Server Pages (JSP). Therefore there is support in J2EE for
the notion of the caller’s identity. Like JAAS, the J2EE authorization model builds on the
constructs of the J2SE model.

 Page 11 of 16

Common
Certain concepts are used consistently across the Servlet and EJB environments.
Roles
Conceptually, Roles are a user attribute intended to control what that user is allowed to do.
Users and Groups are assigned roles and that determines what URLs or EJB methods they are
permitted to access. J2EE defines the Roles and their relationships to EJB methods or URLs.
However, J2EE does not specify the way that Roles are granted to users or groups. In addition
to automatic enforcement, based on role, APIs are provided to allow applications to get the Role
of the current caller.
Role Reference
When independently developed components are deployed in the same container, it is possible
that they might inadvertently use Roles with the same name, however the deployer might want
to assign the distinct Roles to different groups of users. For this reason, the API calls that refer
to role, actually use what is called a Role Reference. At deployment time, the Role References
used in different components are mapped to the actual runtime Roles.
Deployment Descriptor
The way Roles, Role References and many other attributes of components are specified is by
means of Deployment Descriptors. Deployment descriptors are stored in XML format and
processed by the deployment tool when a component is deployed. Deployment descriptors
describe Roles and the resources they are required for. They also describe the mapping between
Roles and Role References. The security features specified via Deployment Descriptors are
called the declarative security model.

Servlet Authorization
The Servlet environment features a number of specialized security features.
User Data Constraints
User Data Constraints specify the security properties required of the communications channel
over which requests are made and responses received. The alternatives are NONE, INTEGRAL
which means protected from modification and CONFIDENTIAL which means protected from
being read. User Data Constraints are specified in a Deployment Descriptor, but the
implementation is up to the application server vendor. User Data Constraints are applied to
some (possibly wildcarded) set of URLs known as a web resource collection.
Auth-Constraints
The Auth-Constraint Deployment Descriptor specifies the Roles required to access a web
resource collection. The application server is expected to enforce these constraints, but again,
the implementation is unspecified.
HTTPServletRequest
In addition to declarative security, the Servlet environment also features programmatic security
features. These are access via the HTTPServletRequest interface, which is defined in the
javax.servlet.http package. The getRemoteUser method returns the name of the current user
associated with the request. The getUserPrincipal method returns a Principal object with the
same name. The isUserInRole method allows an application to determine if the caller is in a

 Page 12 of 16

particular role. The container can use this call to implement the specified Auth-Constraints, but
is not required to.
Servlet Filter
The J2EE Servlet environment now provides the capability of installing a request filter. This is
similar to the web adapter filters used by most Web servers, including iPlanet Web Server,
Microsoft Internet Information Server and Apache Web Server. A web server filter operates by
implementing methods that are called at defined points during the processing of requests and
responses. Web filters and Servlet filters can be used for many purposes, including enforcing
authorization rules. Entegrity AssureAccess version 2.0 provides a Servlet Filter to enforce
security policies in a Servlet environment.

EJB Authorization
The Enterprise Java Bean environment also supports declarative and programmatic security. As
with Servlets, declarative security is defined by Deployment Descriptors. The EJB environment
does not currently define User Data Constraints, but equivalent semantics can be specified at
deployment time and enforced at the Inter-ORB Request level. Roles and Role References are
defined in Deployment Descriptors. However, Roles are mapped to sets of Permissions instead
of web resources.
Permissions
Permissions are defined in a Deployment Descriptor. A Permission can be mapped to any
combination of Beans, Methods or Method signatures. In effect there is a many to many
mapping between Methods and Permissions and between Permissions and Roles. As with
Servlet, Roles can be granted to users or groups, but the method is not specified. A user granted
a role can execute any method associated with a permission contained in that role. Permissions
can also be granted to users directly. The method of implementing Permissions is also
unspecified, but presumably would involve Permission classes.
EJBContext
Programmatic security is provided via the EJBContext interface. The getCallerPrincipal
method returns a Principal object representing the caller making the current request. The
isCallerInRole method determines whether the current caller is in the specified role.

Limitations
Unlike the J2SE and JAAS models the J2EE models at least encompass the notion of a remote
caller. Unfortunately so many aspects of the implementation are unspecified. There is no way
for a security provider to operate without a lot of knowledge of the proprietary implementation
techniques used by the application server. Application servers are supposed to implement
single signon across Servlet and EJB environments, but again the method to be used is
unspecified.

Many aspects of the semantics are also unspecified, for example, whether role and permission
definitions must be consistent or not. Servlet roles and EJB Roles are similar, but different. User
Data Constraints are not available in the EJB environment.

 Page 13 of 16

JSR 115
Java Specification Request (JSR) 115 is an effort under the Java Community Process (JCP) to
define a Service Provider Interface (SPI) Contract, using existing APIs, that will allow Access
Management products, such as Entegrity AssureAccess to plug into the Java environment. JSR
115 is taking the approach of defining a contract between an application server and a security
provider. In principle, this should allow a single security provider implementation to work with
any application server and vice versa.

Security providers will implement the API calls that check Roles and Permissions. By
calculating the grants to users on the fly, customers will be able to take advantage of the
dynamic policy capabilities of modern access management products. For example, a user might
only be granted a specified role at certain times of the day or week. Or a certain permission
could require access from a specified part of the network, or require a specified user attribute
value.

JSR 115 proposes to make no changes to existing APIs. It attempts to include all the features of
the four models and resolve the inconsistencies between them. It allows J2SE Principals or JAAS
Subjects to be used. It does not specify any new management APIs.

New Permissions
JSR 115 remains consistent with both the J2SE and J2EE models by explicitly defining five
permission types, WebResourcePermission, WebUserDataPermission, EJBRoleRefPermission,
EJBMethodPermission and WebRoleRefPermission. Considerable effort is made to preserve the
existing semantics of Servlet Roles and EJB Permissions. The Deployment Tool is still
responsible for parsing the Deployment Descriptors, but the Security Provider is responsible for
building the Policy Object, populating it with the appropriate permissions or providing
equivalent functionality by other means.

Limitations
Since JSR 115 is not finished yet, it is too soon to be certain what its exact form will be, however
some observations can be made. First, whatever its merits, it will be a year or more before it is
supported by significant numbers of application servers. Obviously, users will not receive the
benefits of this approach until it is being delivered in products.

A possible criticism of the JSR 115 approach is its complexity. To the existing scheme of roles,
role references, permissions, implies methods and Deployment Descriptors will be added the
features of third party authorization policy models. This will permit a great deal of flexibility.
However some users my find it confusing to understand.

Finally, there are limitations to what JSR 115 proposes to accomplish. It will not define server-
based pluggable authentication or a standard single signon scheme. It will not define
management interfaces to manipulate permissions or roles.

 Page 14 of 16

AssureAccess JSP Tag Library
Version 1.5 of Entegrity AssureAccess introduced a JSP tag library to facilitate application
development in a JSP environment. Simple, macro-like tags allow users to easily incorporate
Authentication, Authorization, Audit and other dynamic policy capabilities in their JSP
applications. While these tags are not a standard, they do provide customers with measure of
investment protection. If customers need to change the underlying technology used for access
management, it would be possible to simply redefine the Tags. This comparatively simple task
would allow all existing applications that used the Tags to be instantly converted without
having to recode any application.

Universal Java Plug-In
Entegrity AssureAccess version 2.0 now introduces the most revolutionary technology available
anywhere for Java Access Management. The Universal Java Plug-in, based on Tangosol
technology gives users the full power, flexibility and scalability of AssureAccess, with no
application programming required. No advance specification or coding of any kind is
required. Existing applications can be protected as easily as new ones. Even when no source
code is available, the Universal Java Plug-in can protect any method of any object, whether
called locally or remotely. All that is required is for an administrator at the AssureAccess
management console to specify what methods are to be protected with what policies and the
Plug-in does the rest.

This is how it works. Tangosol technology, the product of extensive research and development,
understands the Java bytecodes that are the executable form of every Java program. Tangosol
locates the portions of the application to be protected and inserts protective code exactly where
it is needed. The Universal Java Plug-in works on any Java program, even with obfuscated code.
It is safe for the future, as it only depends of the definition of the Java bytecode language, which
has been stable for many years and is not expected to change.

The Universal Java Plug-in provides the most efficient security programming model possible –
none. It provides AssureAccess customers with complete investment protection. There is no
proprietary API whatsoever. The Universal Java Plug-in eliminates the need to do any security
coding, but at the same time does not interfere with the use of any of the other Java security
standards discussed in this paper.

Summary
Entegrity is fully committed to providing its customers with the most functional and easiest to
use security capabilities for the Java server environments. Entegrity also has a long history of
implementing all applicable standards in its products. Entegrity has been frustrated with the
current infeasibility of implementing various Java authorization standards by an independent
security provider. Entegrity drove the process in the JCP that led to JSR 115 and is active in that
effort (in addition to other standards efforts). Entegrity will fully support JSR 115 when it is
complete. In addition, Entegrity AssureAccess provides customers with a variety of alternatives
designed to minimize development effort and maximize customer investment protection. These
include a Servlet filter, JSP Tag library and the revolutionary Universal Java Plug-in.

 Page 15 of 16

About Entegrity Solutions
For more information about Entegrity Solutions, please contact us at info@entegrity.com or visit
www.entegrity.com.

Entegrity Solutions Offices
West Coast:
2077 Gateway Place, Suite 200
San Jose, CA 95110
Tel: 408.487.8600 ext. 161

East Coast:
410 Amherst Street, Suite 150
Nashua, NH 03063
Tel: 603.882.1306 ext.2701

Mid-Atlantic:
10500 Little Patuxent Parkway, Suite 550
Columbia, MD 21044
Tel: 410.992.7600 ext. 3012

Europe:
Gainsborough House
58-60 Thames Street
Windsor
Berkshire SL4 1TX
United Kingdom
Tel: +44(0) 1753 272 072

Entegrity Solutions makes no warranty of any kind with regard to this material, including but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Entegrity Solutions
shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or
consequential damages in connection with the furnishing, performance, or use of this material. Use,
duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) (1)
(i) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Entegrity®, Entegrity Solutions® and AssureAccess® are trademarks or registered trademarks of
Entegrity Solutions Corporation or its subsidiaries in the United States and other countries. All other
brand and product names are trademarks or registered trademarks of their respective holders.

Sun, Sun Microsystems, the Sun logo, iForce, Java, Netra, Solaris, Sun Cobalt, Sun Fire, Sun Ray,
SunSpectrum, Sun StorEdge, SunTone, The Network is the Computer, all trademarks and logos that
contain Sun, Solaris, or Java, and certain other trademarks and logos appearing in this document, are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Copyright © 2000 – 2002 Entegrity Solutions Corporation and its subsidiaries. All Rights Reserved.
 Page 16 of 16

mailto:info@entegrity.com
http://www.entegrity.com/

	Executive Summary
	Introduction
	Java Authorization
	J2SE Authorization
	Permissions
	Policy
	AccessController
	ProtectionDomain
	Limitations

	JAAS
	Pluggable Authentication
	Authorization
	Limitations

	J2EE Authorization
	Common
	Roles
	Role Reference
	Deployment Descriptor

	Servlet Authorization
	User Data Constraints
	Auth-Constraints
	HTTPServletRequest
	Servlet Filter

	EJB Authorization
	Permissions
	EJBContext

	Limitations

	JSR 115
	New Permissions
	Limitations

	AssureAccess JSP Tag Library
	Universal Java Plug-In
	Summary
	About Entegrity Solutions
	Entegrity Solutions Offices

