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Abstract: In the early sixties of the XX century de Broglie was able to explain the 
cosmological observable red shift, without ad hoc assumptions. Starting from basic quantum 
considerations he developed his tired light model for the photon. This model explains in a 
single and beautiful way the cosmological redshift without need of assuming the Big Bang 
and consequently a beginning for the universe. Evidence coming from Earth sciences seems 
also to confirm these ideas and furthermore concrete proposal of laboratorial scale 
experiments which can test the model are here reviewed. 
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1 - Introduction 
 
In the early sixties of the last century de Broglie published two important papers [1, 2] on the 
properties of the photon. In this paper we recall his pioneering work, which, unfortunately, 
only recently reach my hands due to the difficulty in finding the original papers.  Some more 
recent works [3] done by myself and other researchers [4] on the subject are here reviewed. 
 
Experimental evidence, whether we like it or not, clearly indicates that the strange quantum 
entity we name under the name of photon, just like any other quantum particle, is indeed a 
very complex being. Nevertheless it is possible to describe most of its basic properties in 
terms of a general causal framework valid for any quantum particle. A first approach [4] 
consists in describing a quantum particle in general and the photon in particular by means of 
local wavelet analysis [5] that contemplates both the local and extended properties of the 
quantum entities. A principal advantage of the model springs from its intrinsic mathematical 
simplicity and from the fact that it allows a natural interpretation of the experimental evidence 
coming from different branches of sciences. In Earth sciences it allows the explanation of the 
minute discrepancies between plate tectonics measurements done with GPS and VLBI. In 
astronomy it gives a natural and easy explanation for the cosmological redshift without any 
need for assuming the Big Bang for the universe. Furthermore it gives news insights in the 
measurements done with the super resolution microscopes of the new generation that falsify 
the general validity of Heisenberg uncertainty relations. Finally this causal local model for the 
quantum particle allows the design of laboratory scale experiments that can unequivocally test 
the validity of the model. 
 
 
2 – A simplified causal local model for the quantum particle 
 
Any quantum particle, like for instance the photon, can be described, in a first approach, by a 
full wave φ  composed of an extended yet finite region, the wave θ , described 
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mathematically by a Morlet gaussian wavelet [5] plus a singularity ξ  immersed in the wave 
so that we have 
 ξθφ += . (2.1) 
 
This singularity or corpuscle ξ carrying almost all the energy of the particle is responsible for 
the habitual quadratic detection process. The extended wave, practically without energy 
guides, through a nonlinear process, the singularity preferentially to the points were the wave 
has greater intensity giving origin to the interferometric properties of the quantum particles. In 
the linear approximation the wave devoid of singularity is solution to the usual linear 
Schrödinger equation, while at the nonlinear approach, the function φ  representing the 
quantum particle, is solution to the nonlinear master equation 
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which has a solution [3] in one spatial dimension 
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which can be seen as the sum of the two solutions: The first representing, in a preliminary 
approach, the singularity 
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and the second the extended wave 
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Due to the enormous difference in energy the constant a is very large 
 
 , (2.6) 1>>>a
 
however, this constant may turn to zero in the case when, by splitting or absorption, the full 
wave φ  becomes an empty wave θ , that is, a wave devoid of singularity. The width of the 
gaussians, 0σ andσ , are related with the size of the wavelets and verify the relation 
 0σσ >>> , (2.7) 
meaning that the size of the singularity approaches a Dirac delta function. 
 
The plot of the real part of the function (2.3), representing the particle, is shown in Fig.2.1 In 
this representation we see that both the wave and the singularity share the same phase as 
stated by de Broglie principle of concordance of phase. 
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Fig.2.1 – Plot of the real part of the quantum particle 

 
2.1 – Behavior of the theta wave 
 
From single particle interferometry it is known that in certain situations it is possible to have 
waves without singularity. In this case the real guiding wave, just like any other ordinary 
electromagnetic wave, can be reflected diffracted and so. In such conditions when the wave 
theta, devoid of singularity, interacts with a 50% beam splitter, half of it is reflected, the other 
half being transmitted. If another 50% beam splitter is placed in the transmission path, half of 
the incident wave that is, a fourth of the initial wave is transmitted. By placing more equal 
beam splitters along the transmission path the intensity of the wave is progressively reduced 
till no more wave remains as is indicated in Fig.2.2. 
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Fig.2.2 – The wave devoid of singularity looses amplitude when crossing the beamsplitters 
 

Analytically this situation is represented by 
 
  (2.7) 0)2/1( θθ n=
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or, for a different generic attenuating coefficient t 
 
  (2.8) 10,0 ≤≤= tt nθθ
that is, 
 , (9) ne µθθ −= 0
 
with tln−=µ . (2.10) 
 
In the case of a continuous homogeneous medium the discrete variable need to be changed by 
a continuous one 
 , (2.11) xe µθθ −= 0
 
with µ  standing for the average transmission factor. 
 
 
2.2 – Behavior of the full wave 
 
Suppose now that we place a 50% beamsplitter in front of an incoming full wave φ , and that 
the singularity is transmitted. Next we place, in front of it, another equal beamsplitter, and, 
also in this case, consider that the singularity is transmitted. This process being continued as 
long as one wishes. What results shall be expected from this setup? 
 
We know that the singularityξ , being by its very nature indivisible, is either reflected or 
transmitted. The guiding wave in each beamsplitter gets its amplitude reduced by half. If this 
process of reducing amplitude keeps going on then, after a sufficient number of beamsplitters, 
the amplitude of the guiding wave will practically be zero. In such case we would be left with 
the singularity without the guiding wave. As a consequence de Broglie basic principle for the 
quantum physics, stating that any corpuscle possesses its own associated wave, would be 
broken. In order to avoid the breakdown of the whole conceptual structure of the quantum 
physics another more complex interacting process must be assumed. It is reasonable to 
assume that after having attained a minimum level, compatible with the said basic principle, 
the reduction process for the guiding wave stops. After that point on the amplitude of the 
guiding wave remains, for all practical purposes, constant. This state of minimum energy for 
the guiding wave corresponds to its fundamental state. If the amplitude of the guiding wave, 
from this point on, keeps constant, on average, it needs to take energy from the singularity. 
So, in each beamsplitter the singularity looses a very minute amount of energy to feed the 
guiding wave. This process is shown, schematically, in Fig.2.3. 
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Fig.2.3 – Interacting process for the full wave 

Preprint: To appear in Foundations of Physics 4



 
Analytically the whole process can be divided into two parts: The first with the singularity 
maintaining the energy constant, while the energy of the guiding wave decreases till attaining 
the fundamental energy level. The second when the singularity starts feeding energy to the 
guiding wave. 
 
For the guiding wave it reads 
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with b’ standing for the attenuation factor for the singularity. 
 
In order to relate the parameter b’ with t it is necessary to recall the conservation of energy. In 
each transition the energy lost by the singularity equals the amount gained by the guiding 
wave. We know that 
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The energy lost by the guiding wave in each transition can be computed from 
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which must be compensated by the energy lost by the singularity 
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that is, we must have 
 ξθ ∆=∆  (2.15) 
or, explicitly 
 kk tb θξ )1()'1( −=− , (2.16) 
 
which allows us to express the attenuation factor in terms of the damping constant of the theta 
wave 
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that is, recalling that kξξ =0  
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In such case, and naming the fundamental level of the guiding wave by kF θθ = , the 
attenuation for the singularity can be written 
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where the damping constant is given by 
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2.3 – Experimental Test 
 
It is possible to imagine a relatively easy experimental setup [4] to test the validity of the 
interacting process. For this it is necessary to take in consideration that the interacting process 
assumes that the loss of energy from the singularity to the guiding wave is, really, very small. 
This is a consequence of the fact that there is, as we shall see, an enormous difference 
between the energy of the singularity and the energy of the accompanying wave.  
 
The energy of this wave is so small that is unable to trigger the common quadratic detectors. 
In such case it is reasonable to suppose that under usual laboratory scale experiments the 
energy of the singularity remains, for all practical purposes, constant, even in the case when 
some minute part of it went to the guiding wave. The experimental setup is sketched in 
Fig.2.4, 
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Fig.2.4 – Experimental setup for testing the photon interacting process 
 

where we can see a modified Mach-Zehnder interferometer with 50% beamsplitters B1 and 
B2. Along both arms of the interferometer there are placed an equal number of beamsplitters 
with same transmission factor t. 
 
Let us now calculate the expected visibility, of the interference pattern, seen at the detector D. 
 
a) Orthodox approach 
 
Since the number of beamsplitters, in each arm of the interferometer, is equal, this leads to an 
overall absorbing effect, given by the A factor, at both the reflected and transmitted beams 

01ψ and 02ψ . So we can write for the output beams  
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and consequently, the expected intensity distribution for the arriving photons at the detector 
shall be given by  
  (2.21) 2
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Taking into consideration that for 50% beamsplitters B1 and B2 we have an equal amplitude  
 
 |||| 21 ψψ =  (2.23) 
 
therefore, for this particular case, (2.22) becomes 
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where δ is the phase difference between the two output beams 1ψ  and 2ψ .   
Recalling (2.20) and that 
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we finally have 
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The visibility for this interference pattern is given by Born and Wolf formula 
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which by substitution gives 
 1=oV . (2.28) 
 
This result means that the visibility expected, by the orthodox approach, is always one no 
matter the number of absorbing beamsplitters placed in each arm of the interferometer. This is 
a consequence of the fact that the two coherent overlapping beams have the same amplitude. 
 
b) Causal approach 
 
Assuming for the photon the above interaction process the expected visibility can be 
decomposed into two parts: The first corresponds to the case where the amplitude of the theta 
wave and that of the full wave undergo the same attenuation. The second is related with the 
threshold point. The point just after which the guiding wave attains the fundamental energy 
level kF θθ = . From this point on the singularity starts feeding energy to the accompanying 
wave, so that, for all practical purposes, the amplitude of the theta wave remains constant. 
 
For the first case we have 
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giving by substitution into (2.29) a visibility equal to one 
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which means that the causal intensity  
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for this part second part, gives by substitution 
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that, after some calculation, leads to 
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The visibility of this interference pattern is 
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The plot of the visibilities predicted by the two different approaches is shown in Fig.2.5 
 

k n

  1

V
I II

 
 

Fig.2.5 – Plot for the expected visibility: Dotted line orthodox approach. Solid line causal prediction 
 

The visibility predicted by the orthodox approach is one in the two regions. The causal model 
in the first region predicts also a visibility one. Only in the second region the predictions are 
different. Contrary to the orthodox prediction of constant visibility one, the causal approach 
expects a decrease in the visibility attaining, eventually, a zero value. 
 
 
3 – Causal interpretation of the cosmological redshift 
 
A causal explanation of the cosmological redshift without the Doppler effect was given in 
1962 by de Broglie [1].  In his seminal paper de Broglie presents an alternative causal 
justification for the observable cosmological redshift in terms of his tired light model for the 
photon. Even if he did not elaborate explicitly the aging process for the photon, nevertheless 
his formula still stands. 
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The interacting process responsible for the aging of the photon results directly from the 
previous considerations. The discrete formula (2.18), derived for the case when the particle 
crosses the successive absorbing beamsplitters, can be generalized to include the continuous 
homogenous absorbing medium assuming the form 
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In this expression b stands for the mean amplitude attenuation factor of the medium and is 
the travelled distance. 

l

 
Since  2||ξ∝E
 
the expression for the energy decreasing, as the photon crosses the cosmic space, is therefore 
given by 
 , (3.2) lBeEE −= 0

 
where B=2b is de Broglie cosmological constant standing for average aging coefficient. 
Recalling that νhE =  we can also write 
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developing the exponential, and staying at the linear approximation, which is quite reasonable 
since de Broglie constant is very small, we have 
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Recalling with de Broglie [1] that 
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or, since in astronomy the relative wavelength difference is named by Z, 
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and that Hubble law has the form 
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with H  being Hubble constant and c the velocity of light. In such conditions we have 
 

 
c
HB = , (3.9) 

which shows that de Broglie average aging constant is given by Hubble constant divided by 
the constant c. Recalling that literature presents for the Hubble constant the value 

, we get for de Broglie aging constant the figure 118106.1 −−×≈ sH
 
 . (3.10) 12610 −−= mB
 
Now in order to estimate the distance of a cosmic light-emitting source, assuming, in a first 
approach, that the observable redshift is only due to the aging of the photon, we have only to 
use the expression 
 BZ /≈l , (3.11) 
or 
 . (3.11’) Z2610≈l
 
As we have seen, starting from the causal model of de Broglie for the quantum particle, and 
from the inherent complex interaction process, it was possible to arrive directly, without any 
ad hoc hypothesis, to a natural explanation for the cosmological redshift, without need to 
postulate a hypothetical beginning for the universe. 
 
 
4 – Ratio between the energy of the guiding wave and the singularity 
 
A first rough estimate of the ratio between the amplitude of the guiding wave, in the 
fundamental state, and the amplitude of the singularity can now be made. 
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Remembering that , expanding the exponential, and staying at the linear 
approximation we have  
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Assuming that each transition corresponds, in this case, to a relative large section of space it is 
reasonable to make the transition coefficient t relatively small. Therefore, under this 
assumption, we get a rough estimate 
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expression which, as expected, shows that the energy of the guiding wave is indeed much 
smaller than the energy of the corpuscle. 
 
 
5 – Evidence from Earth Sciences corroborating the causal model  
 
Plate tectonics scientists are presently faced with a minute discrepancy between 
measurements made with geodetic satellites and those coming from very large baseline 
interferometry, VLBI. This small difference remains even after all corrections are made. This 
problem is very pertinent because even if the difference between measurements is very small 
in a year, over the geological times it can be of real significance. Evidence derived from other 
sources lead geologists [6] to believe that geodetic measurements are more precise than those 
from VLBI.  
 
Usual VLBI measurements are made assuming that photons, coming from very faraway 
cosmic sources, keep unchanged its energy no matter the space they have travelled through 
space in order to reach Earth. Since no corrections for the aging of the photon were made it is 
natural to expect that when these corrections are introduced the right result shall be obtained. 
Furthermore, from this difference, is also possible to estimate the approximate value for de 
Broglie aging constant.  
 
Even if it seems amazing that probative evidence for de Broglie causal model for the photon 
could be inferred from the macroscopic Earth Sciences, it is not the first time and probably 
should not be the last in history of science that such a thing happens.  
 
 
5.1. Fourth order interferometry 
 
The basis of VLBI lies in fourth order interferometry [7, 8] that, as the name indicates, 
correlates four fields. The sketch of the setup is indicated in Fig.5.1  
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Fig.5.1 – Sketch of the essence of fourth order interferometry 
 

where A and B represent two photonic emitting sources,  D1 and D2 are detectors and C1, C2 
the counters with C12 the coincidence counter. In this particular case of VLBI the photonic 
sources are in general cosmic objects, quasars, and the detectors D1 and D2 are, usually, radio 
telescopes. The coincidence counter C12 is, normally, named correlator. 
 
From the sketch we see that the fields at the detectors D1 and D2 are 
 
 

2211 21 , BABA EEEEEE +=+=  (5.1) 
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therefore, at a certain instant arbitrary of time, and emphasizing the spatial representation 
because of its intuitive nature, these fields, for the monochromatic approximation, can be 
written 
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and by substitution into (5.1) the total fields at the detectors are 
 

 
⎪⎩

⎪
⎨
⎧

+=

+=

++

++

).(
0

).(
02

).(
0

).(
01

2222

1111

BBBAAA

BBBAAA

rki
B

rki
A

rki
B

rki
A

eEeEE

eEeEE
ϕϕ

ϕϕ

rrrr

rrrr

 (5.3) 

 
to which correspond the intensities seen by the detectors 
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where we have made 
 BA ϕϕϕ −= . (5.5) 
 
From these expressions it is possible to obtain the correlation intensity function measured at 
C12
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Now assuming, as usual, that the light arriving at the two detectors is not correlated in phase 
all terms containing the phase difference in a long run average to zero. So, we simply got  
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In order to further simplify the expression it is convenient to consider the case where 
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Preprint: To appear in Foundations of Physics 12



then, the coincidence intensity, that is, the cross correlation function assumes the habitual 
form 
 )cos1(4 2

1
12 δ+= II  (5.10) 

 
with the modulating phase δ  given by 
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5.2. Orthodox Model 
 
In this approach it is assumed that the photon as it travels astronomical distances through the 
“empty” space, the subquantum medium, or the zero point field as is usually called, keeps 
always its energy unchanged. Therefore since the velocity of the light is constant we must 
write 
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By substitution into (5.11) we obtain for the phase predicted by the orthodox model 
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From Fig.5.1 we see that 
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which means  
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From the angle θ  between the two plane waves coming from sources A and B, and for the 
orientation indicated in Fig. 5.2 
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Fig.5.2 – Relative orientation of the two incoming plane waves 
 
we see that 
 [ ] ykeyeekykk BA θθθ sinsin)cos1()( 221 −=−−=−
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which gives 
 yko θδ sin−=  (5.17) 
 
or, recalling that the angle θ  between the two incoming plane waves is indeed very small 
 
 yko θδ −= . (5.18) 
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In this conditions the expected correlation function intensity I12, assuming no aging status for 
the photon so that it remains unchanged no matter the distance it travels through the space, is 
given by 
 [ ])cos(14 2

1
12 ykII o θ+= . (5.19) 

 
From the difference between the full maximum 0=δ  and the minimum πδ =  it is possible 
to get the approximate angular diameter θ  of the cosmic object, which gives the customary 
formula 

 
yo 2
λθ = . (5.20) 

 
Some times this expression is presented in the scientific literature [9] with a different 
multiplying constant resulting from considering the sources as circular apertures. In any case 
the expression remains essentially the same.  
 
By assuming that the angular diameter of the cosmic object is known then it is possible to 
determinate the distance between the two detectors which typically happen to be 
radiotelescopes. In such situation the distance between the two detectors, assuming, of course, 
that the angular diameter is known, is given by 
 

 
θ
λ
2

=oy . (5.21) 

 
 
5.3. De Broglie causal approach 
 
Now assuming de Broglie local causal model for the photon important modifications need to 
be made in the calculations. From above we know that the change in energy of the photon as 
it travels through the subquantum medium, usually called in the in the orthodox literature by 
zero point field, can be described, as we have seen previously (3.2), by  
 
 , (5.22) lBeEE −= 0

or in terms of frequency  
 lBe−= 0νν , (5.23) 
 
recalling that the velocity c of the light is supposed constant,  
 
 . (5.24) lBekk −= 0

 
In such circumstances, and in order to take into account the change in wavelength due to the 
aging of the photon it is necessary to write 
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 (5.25) 

 
with 

 
B

B
B

A

A
A k

kk
k
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rr

== ˆ,ˆ . (5.26) 
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The corrected phase, assuming the local causal aging model, is therefore 
 
 )ˆˆ()ˆˆ(

2

2

1

1

2

2

1

1
0000 BB

rB
BB

rB
AA

rB
AA

rB
c rkekrkekrkekrkek BBAA rrrr

⋅−⋅−⋅−⋅= −−−−δ , (5.27) 
 
or 
 [ ])(ˆ)(ˆ

21

212

2

12

1

1 )()(
0 BB

rrB
B

rB
A

rrB
AA

rB
c rrekererkek BBBAAA rrrr

−−−= −−−−−−δ . (5.27’) 
 
In order to obtain a more manageable expression it is convenient to make the realistic 
approximation, which corresponds to assume a symmetric geometry  
 
 l≈≈

21 BA rr , (5.28) 
 
with  being the average distance traveled by the photon, from the cosmic object to the 
detectors D

l

1 and D2, and naming 
 
 

2112
; BBBAAA rrrr −=−= εε , (5.29) 

the phase becomes 
 [ ])(ˆ)(ˆ

21210 BB
B

BA
B

AA
B

c rrekrerkek BA
rrrrl −−−= −−− εεδ  (4.30) 

 
or recalling that  (5.31) lBekk −= 0

we have 
 )()(

2121 BB
B

BA
B

AAc rrekrerk BA
rrrrrr

−−−= −− εεδ . (5.32) 
 
Taking in consideration Fig.5.3  
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Fig.5.3 – Graphic representation of the variables 
 
it is possible to write 
 BBAAc ykyk rrrr

⋅−⋅=δ . (5.33) 
 
Naming by ξ  the difference between the vectors and the corrected ones, we have 
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 (5.34) 

From Fig.5.3 we see that 
 BBAA yyyy ξξ

rrrrrr
−=+= ; , (4.35) 

 
so the corrected phase assumes the form 
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 )()( BBAAc ykyk ξξδ
rrrrrr

−−+=  (5.36) 
that is, by rearranging the terms 
 BBAABAc kkykk ξξδ

rrrrrrr
⋅+⋅+−= )( , (5.37) 

 
or, recalling the previous calculations (5.15) and (5.18) we got 
 
 BBAAc kkyk ξξθδ ++−=  (5.38) 
and since it is reasonable to make 
 BBAA kk ξξ

rr
//ˆ;//ˆ . (5.39) 

Because 
 kkk BA ==  (5.40) 
we have 
 )( BAc kyk ξξθδ ++−=  (5.41) 
or by (5.34) 
 . (5.42) ))1()1((

21

BA B
B

B
Ac ererkyk εεθδ −− −+−+−=

 
In order to further simplify this expression it is convenient to recall the following 
approximations 
 εεε ≈≈≈≈ BBA rr A and ,

21
l , (5.43) 

then (5.42) can be written 
  (5.44) )1(2 εθδ B

c ekyk −−+−= l

or 

 ⎥⎦
⎤

⎢⎣
⎡ −−−= − )1(2 ε

θ
θδ B

c eyk l . (5.45) 

 
In order to estimate the value of ε  in terms of known quantities it is worth to look at next 
Fig.5.4 
 

yd
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r1

r2

υ υ
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Fig.5.4 – Sketch with the representation of the quantities for estimating ε  
 
which allows us to write 

 
y
εθ =sin  (5.46) 

 
and making the usual small angle approximation, we got 
 
 yθε ≈ . (5.47) 
 
Under the above approximations the corrected phase assumes the form 
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 ⎥⎦
⎤

⎢⎣
⎡ −−−= − )1(2 yB

c eyk θ

θ
θδ l , (5.48) 

 
since the argument of the exponential is much less than one this expression can be further 
simplified giving 
 )21( lBykc −−= θδ . (5.49) 
 
Finally, for correlated intensity function, taking in account the aging of the photon, we got 
under the simplificative approximations made 
 
 [ ))21(cos(14 2

1
12 lBykII c −−+= θ ]. (5.50’) 

or 
 [ ))12(cos(14 2

1
12 −+= lBykII c θ ]. (5.50) 

 
From the previous considerations we know that in order to make the concrete measurement 
we need to change the length y from zero, corresponding to a null phase, maximal visibility, 
to a of minimal visibility which corresponds to a phase value of π . That is 
 
 πθ =− |12| lByk , (5.51) 
which gives 

 
|12|

1
2 −

=
lB

yc θ
λ , (5.52) 

 
or, recalling  the value predicted by the orthodox approach (4.21) 
 

 
θ
λ
2

=oy , 

 

we may write 
|12|

1
−

=
lB

yy oc , (5.53) 

or 
 co yBy |12| −= l . (5.53’) 
 
These expressions implies that the length we got with the usual VLBI method, yo, is different 
from the causal value yc, obtained assuming the aging model for the photon. Naturally if de 
Broglie aging constant approaches zero, 0≅B , the two predictions are precisely the 
same, .  co yy ≅
 
It is worth to draw the attention that in these VLBI measurements, both without correction 
and with the aging correction for the light it is supposed that the true angular diameter of the 
cosmic object is known. This assumption is, as we are well aware, not entirely correct because 
the value of the angular diameter is also inferred from the theory. In the common approach it 
is given by 

 
yo 2
λθ = , 

 
which assumes that the distance between the two light sensors y is known. Assuming the 
aging model for the photon we have instead 
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|12|

1
2 −

=
lByc

λθ ,  (5.54) 

 
that depends also on de Broglie aging constant B and on the distance l . 
 
Now to estimate the value of de Broglie aging constant for the photon and compare it with the 
previous estimation it is convenient to know the approximate value for this small discrepancy 
between the two measurement processes. In order to do that it is necessary to get assistance 
from the Earth Sciences [10]. In such circumstances and quoting A. Ribeiro and L. Matias [6]: 
 
“The VLBI geodetic method gives results that are distinctly different from near-Earth 
geodetic methods (GPS, SLR, DORIS). Direct comparison between the different methods have 
not been investigated in a systematic way. Nevertheless there are studies that compare results 
of VLBI with plate kinematic models NUVEL-1 and NUVEL-1A, as well as results of near-
Earth geodetic methods with these kinematic models. 
 
The plate kinematic model NUVEL-1 for relative plate motion was computed by DeMets et al. 
(1990) using a large set of tectonophysical measurements: spreading velocities measured 
from magnetic anomalies younger than 3 MA, young fracture zone azimuths and earthquake 
slip vectors. A recent revision of the magnetic time scale implied a revision of the velocity 
values and the relative model NUVEL-1A was defined  
(DeMets et al., 1994). In the NUVEL-1A model the velocity magnitudes were multiplied by a 
constant factor, 0.9562, giving 4.4% slower velocities than NUVEL-1. According to the same 
authors, this correction reduced the discrepancy between the tectonophysical model and the 
kinematic models derived by geodetic methods to only 2%, being the NUVEL-1A the faster. 
 
However, considering only the results provided by the VLBI method, Heki (1996) showed that 
this technique gave plate velocities 3.4% faster than NUVEL-1, that is, 7.8 % faster than 
NUVEL-1A. This means that, using NUVEL-1A as a reference, the VLBI method for 
estimating plate kinematics gives velocities that are 10 % faster (± a few %) than the other 
geodetic methods. 
 
Considering the length of a base line across the Pacific we can evaluate an order of 
magnitude of discrepancy between distances measured by VLBI and distances measured by 
near-Earth methods. For a base line of 5000 km and a relative plate velocity of 150 mm/year, 
7% of plate velocity discrepancy means 1 cm of discrepancy over 1 year. This implies, a 
relative distance difference of 2x10-9 over the base line, with VLBI giving higher distances.” 
  
From this information we gather that experimental evidence tells us that , with y 
standing for the right distance. This implies 

yyy co =≥

 

 1|12| ≥−= lB
y
yo , (5.55) 

or  
 
 , (5.56) 1≥lB
which means that 

 112 ≥−= lB
y
yo  (5.57) 

giving for the aging constant 
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 )1(
2
1

y
yB o+=

l
. (5.58) 

  
This expression can be written in other form. Naming by ∆  the difference between the two 
predicted distances, we have 
 
 ∆+=−=∆ yyyy oo ; , (5.59) 
 
which by substitution in (4.58) gives 
 

 σ
ll 2

11
+=B , (5.60) 

 
with σ  standing for the relative distance difference, y/∆=σ . 
 
Now since quasar distances from Earth can be from about 1025 m to 1026 m and that 

 we got by substitution in (60) 9102 −×≈σ
 
 , mB /10 26−≈
 
which perfectly agrees with the first estimated value, , for the mean aging 
constant assuming that the observable astronomical redshift is only due to the aging of the 
photon.  

mB /10 26−≈

 
 
6 – Conclusion 
 
It was shown that not only the theoretical model for the photon is sound but even more it is 
capable, starting from first principles and without any ad hoc assumptions, to explain the 
cosmological redshift without need of a beginning for the universe as is assumed by the 
nowadays in fashion theory of the Big Bang of religious charisma. On the other hand 
convergence with results coming from unexpected and unsuspected source, as is Geology, 
indicates the correctness of the model to describe, in a first approach, the structure of the 
quantum particles. Furthermore it is worth to call the attention to the important fact that the 
causal model for the photon can be tested in laboratory scale experiments with controlled 
parameters. 
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