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Abstract

Many activities of a contemporary working scientist involve the idea of the
unity of science. There are countless examples where the ideas and methods
of one subject find application in another. There are subjects that comfort-
ably straddle the border between disciplines. There are problems that can only
be tackled by multidisciplinary approaches. Science is a loose federation of di-
verse intellectual, experimental and material communities and cultures. However,
these cultures are strong.

In this paper we reflect upon an area of research that is attracting the at-
tention of computer scientists, mathematicians, physicists and philosophers: the
relationship between theories of computation and physical systems. There are
intriguing questions about the computability of physics, and the physical foun-
dations of computability, that can set the agenda for a new subject, and that
will not go away. Research is in an early phase of its development, but has
considerable potential and ambition.

First, we will argue that concepts of computability theory have a natural
place in physical descriptions. We will look at incomputability and (i) the idea
that computers “exist” in Nature, (ii) models of physical systems and notions of
prediction, and (iii) hypercomputation. We will reflect upon computability and
physics as an example of work crossing the frontiers of two disciplines, introduc-
ing new questions and ways of argument in physics, and enabling a reappraisal
of computers and computation. We will also notice the social phenomenon of



suspicion and resistance, as the theories are unbalanced by their encounter with
one another.

1 Introduction

Scientists are surrounded by references to the unity of science. They can be found
in tales about the historical development of science, and in the theories and
practices of contemporary science. Long ago, biology was invaded by chemistry;
chemistry was invaded by physics; and, long before, physics was conquered by
mathematics. References can also be found in public policies about science —
some sort of unity must be assumed to make sense of the ever fashionable desire
for interdisciplinary and multidisciplinary research, for example. New subjects
are born of old, such as computer science of mathematics, electronics, logic and
linguistics. Computer science is trying to invade everything.

Historically, there are plenty of examples where the ideas and methods of one
subject find application to problems in another. In judging the application, the
“distance” between the subjects involved and the scope for new developments
from the application are important criteria: the further apart, the more remark-
able; the larger the legacy, the more significant. Perhaps, a whole new subject is
formed that straddles the border between disciplines.

Mathematicians and physicists have a deep faith in the unity of their disci-
plines and make use of this unity in their research. They are blessed with long
memories and long term goals. There are extraordinary examples in mathematics
and physics. In mathematics, the 20th century saw algebra and topology com-
bine with dramatic effects. Poincaré’s fundamental group of a space is indeed a
beautiful innovation but it is an amazingly humble origin for diverse new math-
ematics, including concrete topics, such as combinatorial group theory and knot
theory to grandiose theories of everything, such as category theory. In physics,
there is the study of conservation of energy from Grove to Helmholtz, or the
on-going search to unify quantum theory and relativity for a physical theory of
everything. Between mathematics and physics, the emergence of non-Euclidean
geometry and its subsequent role in relativity is an example of unity. Mathemat-
ics and physics export great deal to other disciplines, but it all takes a very long
time.

Computation is a unifying force in science: computers and software are ev-
erywhere. Why? Quantification, a fundamental process of science, rests upon
the collection, generation, storage, processing and interpretation of data. There-
fore, technologies for data have long been essential. Computer Science is the
new discipline whose core concepts are data and algorithm. Actually, because
of quantification, the concepts of data and algorithm can be found everywhere.
What do our fundamental theories of data and algorithms have to offer science?

Computability theory, founded by Church, Turing and Kleene in 1936, is a
deep theory for the functions computable by algorithms on particular forms of
finite discrete data, such as strings over {0, 1} and natural numbers {0, 1, 2, . . .}.
Digital data is precisely the data that can have finite representations, coded by



strings or naturals. Computability theory has been extended to arbitrary data
via generalisations to abstract algebras ([59, 61]), and, in particular, to contin-
uous data, such as real numbers, via approximations ([61, 62]). Computability
theory is at the heart of our understanding of data and algorithm. What has
computability theory to offer scientific understanding?

In this paper we reflect upon the relationship between theories of computabil-
ity and physical systems. There are intriguing questions about the computability
of physics, and the physical foundations of computability, that can set the agenda
for a new subject — they are questions that will not go away. We have a great
deal knowledge to call upon. It is an area of research that is attracting the
attention of computer scientists, mathematicians, physicists and philosophers.
Research is in an early phase of its development, but has considerable potential
and ambition.

First, we will argue that concepts from computability theory have a natural
place in physical descriptions: we show how abstract machine models with oracles
can frame models of the solar system. A connection between computability and
physics introduces a connection between incomputability and physics. We discuss
three “causes” of incomputability:

1. partial or insufficient information for computation;
2. unpredictability of properties of a model;
3. hyper-computational phenomena in the Universe.

We reflect upon computability and physics as an example of work at the
frontiers of two disciplines. It includes the introduction of new questions and ways
of reasoning in physics, and enables a re-appraisal of what makes a computer.
We also notice the interesting social phenomenon of suspicion and resistance, as
the theories are knocked off balance by bumping into one another.

There is a great deal of background to this theoretical task. Computabil-
ity Theory is being redeveloped, even reborn. The mathematical subject that
was created by philosophical problems in the foundations of mathematics in the
1930s has seen fantastic technical developments and spectacular applications
since then. One need only ponder Rogers text-book [53] of 1968(?). But, for a
period of at least twenty years, roughly the 1970-90s, its intellectual vibrancy
and centrality has been eclipsed by its intense technical development. Techni-
cians forgot or avoided old messy debates about what computability theory is
actually about, and whether it has useful consequences for mathematics and
science generally. The image of computability theory was dominated by its in-
ternal technical agenda and achievements, perhaps most extremely expressed
by generalized recursion theory (see [11, 16, 17]). For many computability theo-
rists thinking about old debates, unfinished business, new applications and the
education of young scientists, the prevailing technocratic view was to become
an irritating problem. In the broad community of researchers in mathematical
logic, theoretical computer science and philosophy, computability theory was
considered a corpse for pure mathematicians to dissect.

The rebirth of computability theory involves a large scale investigation of
fundamental questions of about computation. Are physical systems computable?



What can computers, based upon the new technologies of quantum information,
optics, etc., compute? These questions come from outside computability theory
and confront it with questions that will not go away and uncomfortable notions
like hypercomputation — can the technologies compute more, or more efficiently,
than Turing machines? From inside computability theory, Cooper and Odifreddi
have pressed for the exploration of how Turing’s universe lies embedded in Nature
([11]).

Of course, the classical mathematical theory had long been at home with the
non-computable; for example, through various kinds of hierarchies (arithmetic,
hyperarithmetic, and analytic [28]) and, of course, the study of non-computable
Turing degrees such as 0′, 0′′, . . ., to say nothing of the extremes of generalisations
of computability theory to ordinals, searching for priority arguments to solve
analogues of Post’s Problem.

However, the new approach to the foundations of computability leads to fun-
damental questions about what are non-computable sets and functions; these
lead to debate and controversy: “hyper-computation” becomes a forbidden con-
cept because it corresponds to a concept of implementable that has the potential
to contradict the Church-Turing Thesis, the primary legacy of the theory. We
comment briefly on the origins of this criticism and misinterpretations of con-
cepts such as super-Turing computational power.

Our reflections here are an initial attempt to examine the wider context of
our current research programmes [1, 2, 8, 3–7].

2 Computability in Nature: Stonehenge as a calculator
with oracles

Let us reflect on a seemingly complicated example of computation intimately
related with Nature.

The astronomer Fred Hoyle showed in [30, 31] that Stonehenge can be used
to predict the solar and the lunar eclipse cycles. Now, for our purposes, it does
not matter whether the Ancient Britons did, or did not, use this huge monu-
ment to predict the eclipse cycles; but it does matter that we, in our times, can
use Stonehenge to make good predictions of celestial events like the azimuth
of the rising Sun and of the rising Moon, or that we can use this astronomical
observatory as an eclipse predictor. Hoyle’s method is based upon the structure
called Stonehenge I; important in this computational task is the alignment of
the Heelstone with the summer solstice, and the circle of Aubrey holes, made of
56 stones, buried until the 17th century, and discovered by the antiquary John
Aubrey.

Hoyle’s algorithm makes use of three counters for the task: the first counter,
one little stone representing the sun, counts the days of the year along the circle
of 56 Aubrey holes; the second counter, representing the moon, counts the days
of the lunar month; finally, a third counter, takes care of the Metonic cycle, in
which the same phases of the moon are repeated on the same date of the year
to within an hour or so after a period of nineteen years, a fact discovered by



Meton around 430 BC though it is believed to have been known earlier. In other
words the third small stone counts along the cycle of the lunar node, one of the
intersection points of the ecliptic with the Moon’s orbit.

Fig. 1. A schematic drawing of Stonehenge I.

Since 56× 13
2 = 365, the first counter has to move two places — two Aubrey

holes — each 13 days (one place per week roughly speaking), counterclockwise.
In a similar way, since 56 ÷ 2 = 28, the second counter is allowed to move two
places per day, counterclockwise. When the two counters meet at the same hole
an eclipse becomes possible, but only if the Sun and the Moon are close to the
lunar’s node — intersection point of the ecliptic and the Moon’s orbit. This point
is represented by the third counter. Thus, the three counters have to meet at the
same hole (more or less). This third little stone counts along the Metonic cycle:
56÷ 3 = 18.67 (very close to the true value 18.61, a most strange coincidence),
meaning that it has to move 3 places — 3 Aubrey holes — per year, clockwise.

Thus the movement of the three stones around the circle of Aubrey holes
allows us to predict the solar and the lunar eclipse cycles. The seminal paper,
in which Stonehenge is given an astronomical interpretation as a predictor of
eclipses, was by the archeologist Hawkins, in [26], but the mathematical calcu-
lations were done by Hoyle, years later. See also [38] for a short introduction.



Fig. 2. Orbits.

By calling Hoyle’s method Hoyle’s algorithm, we have introduced the idea of
re-interpreting it using concepts from the theory of computation. What model
of computation fits best Hoyle’s algorithm? What have we got? The algorithm
is based upon a simple machine with 3 counters and a memory so the n-counter
machines4 come to mind. In computability theory, Stonehenge I and Hoyle’s
algorithm shows that a 3-counter machine implements an eclipse cycle predictor
using arithmetic modulo 56. Actually, we can also be more restrictive and think
in terms of finite state automata; or we can be more general and involve Turing
machines and register machines (which are “equivalent” to n counter machines
for n ≥ 2).

A quite straightforward algorithm is implemented by a special purpose ana-
logue machine. It is analogue in the original sense that it is analogous to the
physical system it calculates. When playing with the counter machine do we
“see” in the movements of the three pebbles the Sun, a physical body, and the
Moon, another physical body, and (the words are taken from Hoyle) a holy spirit,
the lunar node, performing a dance in the sky, one that is projected onto the
celestial sphere from earthly Wiltshire? Yes, if we have a Rite associated to the
ballet of the stones.

However, this is not the whole story. Over time, the calculations with the
counters loose accuracy. Once in a year, the Sun rises over the Heelstone. Some
auxiliary stones (the post holes), to one side of the Heelstone, can be used to fine
tune the counters: the site of the rising mid-summer Sun moves to the north and
then back to the south, allowing us to fine tune the Sun’s counter by observing
from the center through the post holes its maximum azimuth. Some auxiliary
stones also help to fine tune the second counter. The observations of the Sun
and of the Moon operate like oracles. Thus, the calculating master, in the centre,
can calculate the eclipse by the less accurate algorithm together with an oracle

4 An n-counter machine is a register machine with n registers for natural numbers and
simple assignments based upon successor and predecessor, and jumps based upon
equality.



for the Sun and a second oracle for the Moon. Thus, if the Ancient Britons were
“aware” of algorithms then they were aware of algorithms with oracles!.

The curious thing is that we have a reality in the sky and an analogous reality
in the big circle. The algorithm is captured by the real world in the sense that
the real world embeds or realises or embodies the algorithm (c.f. [64]).

Thesis 1 When we abstract from physical entities, we can find special purpose
computers existing in Nature.

This idea of mathematics and computation residing in Nature can be seen
in Galileo’s work and we could be tempted to refer to the thesis as Galileo’s
principle of natural computation.

If computability is to be found in Nature then is incomputability to be found
also? Cooper and Odifreddi address this idea in [11] for these authors (in)-
computability sounds more like an intrinsic limitation of knowledge about the
Universe than a physical manifestation of hypercomputation; we will discuss this
aspect later.

The idea of The Universe that is often used has a disadvantage. When used
alone, without specification of the model we have in mind, it conveys the im-
pression that there is a “true nature” of the Universe and that we may know it.
A universe is simply a model of some aspect of the Universe. The word universe
has the further advantage that it may be used freely and loosely without any
need to remind ourselves constantly that The Universe is still mysterious and
unknown.

Our Stonehenge model of a fragment of The Universe is not so bad and it
certainly makes a memorable connection between Computability Theory and
Physics.

Stonehenge can be also used as a calculator and computer for doing arith-
metic and (why not) for implementing some more sophisticated algorithms.
Moreover, Stonehenge implements natural phenomena, the complex movements
of the Sun and the Moon in the sphere. Stonehenge possesses the means of con-
sulting oracles in Nature itself. Through observations of the world, oracles here
handle some incomputabilities.

We end this section with a question: Do the incomputabilities we mentioned
above come out of

(i) an unpredictable behaviour of a model of Nature, or
(ii) a really essential incomputability in Nature?

The latter supposes the existence of the hypercomputational character of some
physical phenomenon. The most publicised example of this is what Penrose was
looking for in [42–44]. But hypercomputational with respect to what models of
computation?

Let us interpret predictability to be the ability to decide on whether or not
a model has some property.

Moore was among the first to observe a failure of predictability. We are
accustomed to think of chaos as sensitivity to initial conditions, which rules
out reliable, reproducible predictions of system behaviour because of numerical



precision. Moore showed that essential chaos exists in the sense that infinite
precision in the initial conditions will not remove it. He showed that the collection
of dynamical maps contains many instances of simulations of universal Turing
machines. In other words, any property that a map can have, like being injective,
or onto, or having an infinite domain, or having an infinite range, or being
total, is undecidable unless it is trivial (cf. Rice’s Theorem). Now, in terms of
dynamical systems, these questions concern basins of attraction. These basins
are, in general, non-computable, i.e., there is no hyper-algorithm that will tell
us whether or not a point is in them. Recall Theorem 10 from [37]:

Proposition 2.1 (Moore’s undecidability theorem). The following ques-
tions about discrete-time dynamic systems are undecidable.

(a) Given a point x and an open set A, will x fall into A?
(b) Given a point x and a periodic point p, will x converge to p? Will a dense

set of points converge to p?

Incomputability is a riddle. What kind of incomputability should we search
for in Nature? Given our discussion, here are three possible causes:

1. partial or inadequate information for calculations;
2. essential unpredictability of properties of models;
3. hyper-computational phenomena in the Universe.

In the first case, we cannot compute because we do not have all the necessary
variables (e.g., the Adams-Leverrier discovery of Neptune; hidden variables in
the Paris School of Quantum Mechanics). In the second case, we cannot decide
algorithmically if properties of models of physical systems hold or not. In the
third, Nature performs computations that our algorithms cannot.

Articles like [11] raise questions about the physical nature of computability
and about the possibility of exporting new concepts from Computer Science to
other sciences.

3 Computability in Nature: n-clocks machine

Let us return to the re-interpretation of Stonehenge’s counters using computabil-
ity theory. The 3-counter machine has a very well known property.

Proposition 3.1 (Universality of n-Counter machine). There is a Turing
universal 2-counter machine.

The n-counter machines are primitive and troublesome to program. Students
play with such machines to get acquainted with a model of computation, doing
exercises for calculating the sum, product, etc. How remarkable, then, that the
Stonehenge computer, a 2-counter machine, computes the cycle so neatly. Thus,
in the Stonehenge case, the counter machine is a kind of natural computer.



Let us consider a more sophisticated machine, one that is not well known but
also fits with Stonehenge. The model was introduced in Killian and Siegelmann
[32]. Although introduced for rather ad hoc purposes in a proof, the model is
attractive when reflecting on natural computing, such as in Stonehenge.

The model of computation is called the n-alarm clock machine, or just n-
clock machine and is made of abstract clocks with programmable alarms. Time
is an abstraction that belongs in the physical world. By an alarm in the physical
world we can consider things in macroscopic or microscopic worlds that signal
special events, e.g., an astronomical ephemeris, like a conjunction of planets, or
the reaching of a perihelion, or an eclipse.

A n-alarm clock machine A consists of n clocks. Each clock 1 ≤ i ≤ n is
represented by a pair (pi, ti), where pi ∈ N is the period of clock i and ti ∈ N is
the next time at which the clock i sounds its alarm. Thus, a state or configuration
of the machine is a vector of the form

((p1, t1), . . . , (pn, tn)).

The behaviour of the machine is determined by a transition function, which
is a total function that selects sets of instructions to perform on the clocks: we
suppose

A : {0, 1}5n → 2{delay(i),lengthen(i):1≤i≤n}∪{halt}.

that satisfies A(0 . . . 0) = ∅. Intuitively, this latter condition means that the
machine must be asleep until it is woken.

The fact that A’s domain is {0, 1}5n means that A’s input is the information
of which alarm clocks have alarmed in the last 5 time steps5 and when they did
so. A’s output is simply which clocks to delay, which clocks to lengthen, and
whether the machine halts or not. Let δ(t) denote such a set of actions at time
t.

Given a n-alarm clock machine A, and an initial configuration

c(0) = ((p1, t1), (p2, t2), . . . , (pn, tn)),

the computation of A on the given configuration is a sequence

c(0), . . . , c(t− 1), c(t) = ((p1(t), t1(t)), (p2(t), t2(t)), . . . , (pn(t), tn(t))), . . .

of configurations over time t that satisfies for all t,

pi(t+ 1) =
{
pi(t) + 1 if lengthen(i) ∈ δ(t)
pi(t) otherwise

ti(t+ 1) =

 ti(t) + 1 if delay(i) ∈ δ(t) or lengthen(i) ∈ δ(t)
ti(t) + pi(t) if ti(t) = t and clock i alarms
ti(t) otherwise

5 The number 5 is considered here just because we know the existence of a universal
n-clock machine with constant 5. We do not know if there exists a universal n-clock
machine exhibiting a smaller structural constant.



The role of the clocks of the alarm clock machine is to store information on the
frequency with which they alarm. In Turing machines the tapes are potentially
infinite, but at any given instant only a finite amount of information is actually
stored on the tape. In the same way, the period of the clocks may increase
without limit, but at any given instant all alarm clocks have a period bounded
by some constant.

Proposition 3.2 (Simulation of the n-counter machine). For a n-coun-
ter machine that computes in time T , there exists a k-alarm clock machine that
simulates it in time O(T 3) with k ∈ O(n2).

In consequence,

Proposition 3.3 (Universality of n-clock machine). There is a universal
n-clock machine, for some n.

The observation is that this kind of machine can implement astronomical
models of the dynamics of the Solar System in a natural way, partially gener-
alising the way the Stonehenge token game implements the eclipse cycle in a
natural way. We can add oracles to the machines, say at precise conjunctions of
heavenly bodies. In particular, the model is universal and suitable for thinking
about physical bodies, e.g., in the Newtonian gravitational field.

Thesis 2 When we abstract from physical entities, general computers exist in
Nature.

This thesis could be referred to as a physical principle of general computation.
The standard model of computation, the Turing machine, can be described in
an equivalent way, via the n-clock machine model, which resembles the process
of making astronomical observations in the manner of the Ancients. Of course,
all machine models are abstractions of material components and systems, as are
their abstract resources, such as time and space.

The experience of celestial conjunctions described above is not unlike looking
at the concept of incomputability as action at a distance in the time of Newton.
Oracles are needed to fine tune the system once in a while, not only to remove
errors (of truncation of real numbers), but also to remove unpredictability.

Smith’s construction in [58] can be viewed in the following light: It was known
that there were mechanical systems whose asymptotic (long time) behaviour was
not known — any computation up to any finite time would hit the problem that
just because a given event had not happened yet, did not mean that it would not
happen in the future. However, Smith’s gravitational machine uses the behaviour
of point particles approaching arbitrarily closely to allow uncountably many
topologically distinct paths of a point particle in finite time. If you can observe
which path the particle actually takes, then you can work out, in finite time,
much more information about the initial state of the particles than a numerical
error bound. A complication is that there is an infinite set of measure 0 initial
states close to the original one where a collision of point particles occurs — a



situation where Newton’s laws cannot predict the outcome. Smith observed that
although we are able to show that Newton’s gravitation admits a non-computable
orbit, and hence a kind of incomputability of the third kind (3), special relativity
removes it from consideration.

Expressed in a rather different and radical way, the discovery of a non-
computable orbit in Newtonian mechanics refutes Newtonian gravitation the-
ory, because it contradicts the physical Church-Turing thesis; in the same way,
philosophically speaking, the curvature of light rays from distant stars in the
proximity of the Sun refute Newtonian gravitation theory. This adds to the
philosophic riddles.

If the reader takes a closer look at the discussion on the Church’s Thesis
in Odifreddi’s text books [40, 41] (e.g., pp. 101-123 in [40]), he or she will find
different formulations of the classical Church’s Thesis, such as Kreisel’s Thesis M
(for mechanical) or Kreisel’s Thesis P (for probabilistic), and so on. Here, at this
precise point of his text we find In the extreme case, any physical process is an
analogue calculation of its own behaviour. And Odifreddi adds a quite interesting
footnote:

In this case, Church’s Thesis amounts to saying that the universe is, or
at least can be simulated by, a computer. This is reminiscent of similar
attempts to compare Nature to the most sophisticated available machine,
like the mechanical clock in the 17th Century, and the heat engine in the
19th Century, and it might soon appear as simplistic.

In fact, Thesis P states that any possible behaviour of a discrete physical
system (according to present day physical theory) is computable. Our various
systems disprove this [5–7, 1]. Also Smith disproves this statement: there exists
a Newtonian non-computable orbit. It is not relevant that Relativity Theory
removes this pathology: no one would ever believe a few years ago that Thesis P
would not be valid. Or is it still valid? Well, physicists say, we don’t have point
masses or two masses can not come as close as we want. We argue that these
are qualitatively physical aspects that are not in the formulation of Newtonian
gravitation. We will restate saying that no one would ever believe a few years
ago that Thesis P would not be valid even for the abstract gravitation theory
taught in Physics courses.6 Is there a student’s course notes that considers from
scratch the problem of two bodies with non-zero volume. But if then Professor X
shows that the n-spherical-body problem gives rise to a non-computable orbit,
physicists will say that planets are not really spheres. Here are things in need of
better explanations.

Thus, when Cooper and Odifreddi write in [11]:

Fortunately, there is another approach — let’s call it the “mathematical”
approach — which renews the link to Newton. This is a direction rooted

6 The most comprehensive study we know is a Treatise about stability of a spacecraft,
considering 2-body dynamics, on one side the spacecraft with non-zero dimensions
and on the other side the Earth just substituted by its centre of gravity.



in the old debate about whether computability theory has any useful con-
sequences for mathematics other than those whose statements depend on
recursion theoretic terminology.

We would add the direction is also rooted in the new debate about whether
computability theory has any useful consequences for physics.

We can say that Nature has an algorithmic content: it is greater than the
algorithmic content of the Solar System, greater than the algorithmic content of
the system Moon–Sun–Earth, greater than the algorithm content of Stonehenge
I. Imagine that Stonehenge IV would have been built then, certainly, it would
implement the n-clock machine. Does the Universe, or just the universes, have
an algorithmic content greater than the algorithm content of Stonehenge IV,
abstracting from bounded resources?

We have made a case for the models of computation being intimately related
with physical models and physical behaviour. Let us turn to incomputability.

4 Incomputability and predictability: the discovery of
Neptune

Many physical theories provide methods of measurement and calculation. If the
calculations are not consistent with measurements then the theory has a prob-
lem. The desired measurements are not predicted by the calculations, i.e., they
are incomputable. Continuing with the mechanical examples, we will reflect on
mechanics, especially Newtonian’s theory of gravitation, as a method of calcula-
tion. The theme is preserving and restoring computation when confronted with
incomputabilities.

4.1 Action at a distance

Newton’s gravitational law introduced the metaphysical concept of action at a
distance. For Newton, action at a distance was done by means of God: space is
the Sensorium Dei by means of which He stabilizes the system. In his Opticks,
Newton wrote:

... can be the effect of nothing else than the Wisdom and Skill of a pow-
erful ever-living Agent, who being in all Places, is more able by his Will
to move the Bodies within his boundless uniform Sensorium, and thereby
to form and reform the Parts of the Universe, than we are by our Will
to move the Parts of our own Bodies. And yet we are not to consider
the World as a Body of God, or the several Parts thereof, as the Parts
of God. He is an uniform Being, void of Organs, Members or Parts, and
they are his Creatures subordinate to him, and subservient to his Will;
and he is no more the Soul of them, than the Soul of Man is the Soul
of the Species of Things carried through the Organs of Sense into the
place of its Sensation, where it perceives them by means of its immediate
Presence, without the Intervention of any third thing.



The removal of action at a distance from Physics is not unlike the removal
of the Rite in Stonehenge I. The removal of the Rite in Stonehenge I is also
like Laplace’s removal of the Sensorium Dei from Newton’s space.7 But with
a Sensorium Dei or without it, Smith proved the existence of non-computable
orbits: an incomputability of the third kind (3), although the proof is based on
work of Gerver in [19], and others for particular cases.

Cooper and Odifreddi raise the question ([11]):

Why should those without a direct career interest care whether actual in-
computability (suitably formalized) occurs in Nature? Even if it did occur,
for all practical purposes, how would it be distinguishable from theoreti-
cally computable but very “complex” phenomena? Whether chaotic phe-
nomena — such as turbulence — involve complexity or incomputability
is interesting, but does it really “matter”?

The question is also related to Cooper’s ideas in his later ([9]). We think that
the answer to this question is not easy.

4.2 Waves

Differential equations do exist, having computable coefficients and given com-
putable initial conditions, which cannot be numerically solved by a digital com-
puter: their solution are beyond the Turing limit. Pour-El and Richards pro-
vided examples in [49–51]. For example, they considered the three-dimensional
wave-equation in [50]. It is well known that the solution u(x, y, z, t) is uniquely
determined by the initial conditions u and du/dt at time t = 0. They asked
whether computable initial data can give rise to non-computable solutions and
gave the answer Yes. They gave an example in which the solution u(x, y, z, t)
takes a non-computable value at a computable point in space-time.

However, these examples have initial conditions, or boundary conditions,
which are not smooth enough to describe real physical situations.

Are all physical laws digitally reproducible by a digital computer? If so, then
we may talk about non-computable functions as those functions that can not
be known through numerical computation using digital computers, despite the
fact that they satisfy very simple differential equations. Calculating positions of
planets (ignoring some possible incomputabilities suggested in [58]) was, in fact,
a problem of precision. The intrinsically non-computable functions of Pour-El
and Richards are of a different kind.

Do we have a model to classify such sources of uncomputability found in
[49–51]? No, we don’t. Do you imagine an equation — Poisson’s equation — as
simple as

ψ(x, 0) = f(x),

∂2ψ

∂x2
− ∂2ψ

∂t2
= 0,

7 Newtonian space, like Descartes’ substantial space, was not empty but the Nervous
System of God.



having a non-computable unique solution (non-computable in the sense of con-
ventional computable analysis): there exists not a program such that giving the
values of computable numbers x and t with increasing precision will provide
ψ(x, t) with increasing precision, despite existing such a program for the func-
tion f .

Penrose rejects these examples as useful to a forthcoming Non-computa-
ble Physics, since the boundary conditions or initial conditions involved are
not smooth enough. In [42] he stresses this fact before considering the non-
computable ultimate physical theory to come and the human mind:

Now, where do we stand with regard to computability in classical the-
ory? It is reasonable to guess that, with general relativity, the situation
is not significantly different from that of special relativity — over and
above the differences in causality and determinism that we have just
been presenting. Where the future behaviour of the physical system is
determined from initial data, then this future behaviour would seem (by
similar reasoning to that we presented in the case of Newtonian theory)
also to be computably determined by that data (apart from unhelpful type
of non-computability encountered by Pour-El and Richards for the wave
equation, as considered above — and which does not occur for smoothly
varying data). Indeed, it is hard to see that in any of the physical the-
ories that we have been discussing so far there can be any significant
“non-computable” elements. It is certainly to be expected that “chaotic”
behaviour can occur in many of these theories, where very slight changes
in initial data can give rise to enormous differences in resulting be-
haviour. But, as we mentioned before, it is hard to see how this type
of non-computability — i.e. “unpredictability” — could be of any “use”
in a device which tries to “harness” possible non-computable elements in
physical laws.

Computation is preserved by declaring that the boundary conditions are not
well-posed physically.

Now, what is the consequence of this to Science? Even for complex phenom-
ena like the dynamics of the atmosphere we have strong methods of numerical
modelling. We take the Navier-Stokes equation and assume (a) spherical co-
ordinates, (b) that the Earth is not an inertial reference frame, (c) boundary
conditions around east North-America’s shore and West-Europe’s and North-
Africa’s coast. We presume that (i) such differential equations are integrable by
numerical methods and (ii) a prediction of the weather for tomorrow can be
obtained before tomorrow. Thus we still have computability considerations and
computational complexity considerations. Philosophically speaking, we turn to
models of Nature which are predictable. Science in this way is used to make
a synthesis of our knowledge about the Universe and to forecast future events.
We think that the answers to the questions raised by Cooper and Odifreddi in
our last quotation of their article (just before Section 4.2) are “Yes”, “We don’t
know”, and “Yes”. A non-computable world, like the model desired by Penrose,



would have a quite different meaning. Assuming that no more computational
power is added to computers, we wouldn’t have general predictions. The model
would be looked upon as divine: suddenly a pattern formation occurs out of the
model and some sophisticated computer programs would be able to trace and
forecast its trajectory, like a hurricane that although cannot be exactly predicted
can be expected and followed, either by satellites or computer programs. A Non-
computable Science would be more like a painting in the National Gallery — to
look at with respect, admiration, and fascination, being interpreted the critics
(would it meet Susan Sontag’s Against Interpretation). Maybe the questions of
Cooper and Odifreddi become:

(a) Does our contemporary science contain patterns of a non-computable
model? or

(b) Do we already have a Non-computable Science, hidden in our theoretical
achievements? or

(c) Non-computable Science is no more than contemporary fiction, a motor
and product of the creative process, like the stone was for Alchemy.

No matter the true answer, they make the concluding statement that:

Our model says nothing about the mystery of material existence. But it
does offer a framework in which a breakdown in reductionism is a com-
monplace, certainly not inconsistent with the picture given of levels we
do have some hope of understanding. It can tell us, in a characteristically
schematic way, how “things” come to exist. 8

4.3 Universes

We also know that modern science is losing some coherence and identity. There
is just one Newtonian gravitation theory,9 but with the advent of the General
Theory of Relativity, physicists realized that Einstein’s beautiful field equation

Rij −
1
2
gij R = κ Tij

could be replaced by different field equations delivering the same realities, de-
livering the same predicted observations of our Universe. Most probably a non-
computable model will deliver also a class of similar observations of the Uni-
verse. For instance, is Hoyle’s or Hoyle-Narlikar’s field of creation ex nihilo non-
computable? This is not philosophy, since Hoyle’s field of creation out of nothing
is hard mathematics, although it is refutable nowadays, and not accepted by the
8 The reader can have a look at the Eddington’s Cosmic Equation, that was a source

of explanation of how the Universe came into existence.
9 Though, in fact, for some time, physicists were tempted to define the law

1

r2.0···025 .

Ridiculous, isn’t it? But it worked for a few years, when physicists lost their faith
for reasons that will become clear soon.



scientific community, as the Big Bang Theory is the standard model. Yet, it
explains the same observations as the Einstein field equations at some level.

In the 1950s it was a perceived that The Universe was expanding. There was
no evidence of the universe showing signs of age. If The Universe was in a steady
state then it need to gain hydrogen atoms to preserve the density of hydrogen.
Hoyle arrived at the alternative equation

Rij −
1
2
gij R + Cij = κ Tij .

Associated with the creation tensor Cij was a vector field parallel to a geodesic
at each point of the homogeneous and isotropically expanding universe. The field
was written

Cm =
3c
a

(1, 0, 0, 0),

where a is a constant. Hoyle then showed that the solution of the field equations
would be given by a metric with space of zero curvature. One can interpret the
step as an attempt at preserving the form of Einstein’s equations and calcula-
tions.

Bondy, Gold, and Hoyle used the word creation rather than formation, just
to emphasise the existence of matter where none had been before.

With the Hoyle-Bondi-Gold’s model we can evaluate the amount of matter
being created at any step of time. But can we predict the point in space where
a proton (Hoyle guessed that the spontaneous creation of matter might possibly
be in the form of neutrons) will next appear? This is an example of how a non-
computable aspect of a theory (we cannot even guess a distribution of matter
created10) can deliver also computable trajectories of our Universe.

There is a more recent discussion on the evaporation of black holes which is
also of relevance here. Hawking [24] showed that combining quantum field the-
10 Harrison explains these features in [23]:

There are two kinds of creation: creation of the universe and creation in the
universe. On one hand, we have creation (as in cosmogenesis) of the whole
universe complete with space and time; on the other, we have creation of things
in the space and time of an already existing universe. In the Big Bang universe,
everything including space and time is created; in the steady-state universe [of
Bondi, Gold, and Hoyle], matter is created in the space and time of a universe
already created. Failure to distinguish between the two violates the containment
principle... The steady-state theory employs creation in the magical sense that
at certain place in space at a certain instant in time there is nothing, and at
the same place a moment later is something. But the creation of the universe
has not this meaning, unless we revert to the old belief that time and space are
metaphysical and extend beyond the physical universe; in that case, creation
of a universe is in principle the same as the creation of a hazel nut. But in
fact uncontained creation (cosmogenesis) is tottally unlike contained creation.
Cosmogenesis involves the creation of space and time, and this is what makes
it so difficult to understand.



ory with general relativity gave a prediction that black holes should evaporate
- that is they radiate particles which results in a loss of mass to the black hole,
until eventually the black hole disappears. Similarly to Hoyle’s creation field,
this particle creation could be viewed as a creation of particles at an essentially
random piece of space in the vicinity of the event horizon. This seeming ran-
domness became the subject of a thought experiment: If an observer were to
drop an encyclopedia into a black hole, and then wait until it evaporated, would
there be enough information in the particles radiated from the black hole to
reconstruct the encyclopedia [25]? This subject of information loss has become
hotly debated in recent years.

Cooper and Odifreddi recognizes these different presentations of the Universe
stating that:

we look for a mathematical structure within which we may informatively
interpret the current state of the scientific enterprise. This presentation
may be done in different ways, one must assume, but if differing modes
of presentation yield results which build a cohesive description of the
Universe, then we have an appropriate modeling strategy.

(See [11].) Furthermore:

... non-locality was first suggested by the well-known Einstein-Podolsky-
Rosen thought experiment, and again, has been confirmed by observation.
The way in which definability asserts itself in the Turing universe is not
known to be computable, which would explain the difficulties in predict-
ing exactly how such a collapse might materialize in practice, and the
apparent randomness involved.

4.4 Neptune

The n-clock machine can be implemented with bounded resources in Stonehenge
using colored stones, a color for each clock, 5 colored tokens for each clock.11 It
would have made Stonehenge a huge Observatory (although many existent stones
— like the post holes — can handle a large number of calculations that, despite
the non-existence of a useful — to the Ancients — implementation of the n-clock
machine, make Stonehenge I and II a rather huge Astronomical Observatory).
But we are going to talk now about a feature that can not be implemented in
Stonehenge: the discovery process!

After Herschell’s discovery of Uranus, deviations from computed orbit, us-
ing Gaussian methods, produced more and more observations of the new slow
planet, leading to calculations of more and more accurate orbits. But the new
planet always failed to meet the computed orbit: Uranus escaped computation:
it was incomputable. If T is Newton’s theory of gravity then Uranus was not
T -computable.
11 It would be like a Calendar with many entries (cf. Reingold and Dershowitz’ Calen-

drical Calculations.



There are two attitudes. First, one accepts the problem for a period but
refuses to give up the calculation. The ancients failed in the prediction of planet
cycles. Stonehenge fails as Observatory, but perhaps the memory of the glorious
Stonehenge I compels the building of Stonehenge III, the colossal construction
of central 3-liths.

Secondly, one accepts that the Newtonian law is wrong and begins the search
for the new “true” law of gravitation.

But, as we know, it was too early to reject the Newtonian theory of the
Universe. Observations failed; the law 1

r2 failed. But Leverrier and Adams, one
in Paris, the other in London, proposed that a new planet existed — later called
Neptune — to justify departure from predicted orbits and to justify the true
(Newtonian) law of gravitation12. Uranus was again T -computable.

This step cannot be done by a computer program13. What is the difference (if
the planet was not found) between predicting a planet and replacing Newton’s
law by another law, being it computable or not? Is the discovery of a new planet
a kind of removal of incomputability?

How did the scientists respond to the predictions of Leverrier and Adams?
They rejected them; they didn’t believe them. Is it not a common reaction of an
established scientist’s mind: if some hypothesis not in the system is suggested,
then it should be immediately rejected. For example, Airy rejected Adams several
times: how, we would like to go to Greenwich and knock at the door to hear
him saying no! As Morton Grosser tells the story in [22], Airy was an extreme
perfectionist, and he divided the people around him into two groups: those who
had succeeded and were worthy of cultivation, and those who had not succeded
and were beneath consideration [...] Adams solution of the problem of inverse
perturbation was thus a direct contradiction of Airy’s considered opinion. The
Astronomer Royal’s negative feelings were indicated by the unusually long time
he waited before replying. Airy habitually answered his correspondence by return
mail. In Adams’ case he delayed the answer as much as he could.

It would have been enough to look to the sky with a telescope using calculated
positions of Neptune.

Feel the pleasure of the following letter of Airy to Adams; it could be adapted
to a letter of caution about any thing by an illustrious scientist of our times:

We have often trought of the irregularity of Uranus, and since the receipt
of your letter have looked more carefully to it. It is a puzzling subject,
but we give it as my opinion, without hesitation, that it is not yet in
such a state as to give the smallest hope of making out the nature of any
external action on the planet [...] But [even] if it were certain that there
were any extraneous action, we doubt much the possibility of determining
the place of a planet which produced it. We are sure it could not be done

12 The difficulties lay with the computation of planet path around the sun without
interaction by other planets; Uranus was not computable as a 2-body problem.

13 Well, Herbert Simon said that it can! — at least Kepler’s laws can be rediscovered
by computer programs, given Tycho Brahe’s data; but not the prediction of a new
planet; see [52].



till the nature of the irregularity was well determined from successive
revolutions.

In a further letter, Airy writes to Adams:

We are very much obliged by the paper of results which you left here a
few days since, showing the perturbations on the place of Uranus produced
by a planet with certain assumed elements. The latter numbers are all
extremely satisfactory: we are not enough acquainted with Flamsteed’s
observations about 1690 to say whether they bear such an error, but we
think it extremely probable.
But we should be very glad to know whether this assumed perturbation
will explain the error of the radius vector of Uranus. This error is now
very considerable.

According to [22], on September 18, 1846, Leverrier wrote to Johann Got-
tfried Galle, assistant to Olaus Roemer. This letter reached Galle on September
23, and he immediately asked his superior, Johann Franz Encke, Director of the
Berlin Observatory, for permission to search for the planet. The same night Galle
and d’Arrest found the planet: that star is not on the map — exclaimed d’Arrest;
right ascension 22h 53m 25.84s against the predicted value of Leverrier 22h 46m.
Although impressive, this accuracy is smaller than Stonehenge’s accuracy for the
eclipse cycle.

The serendipity of discovery — whether of the kind in the case of Archimedes’
Eureka!, or in Kepler’s laws, or even Kepler’s laws according to Herbert Simon’s
program — are different from the kind of discovery of Neptune.

Thesis 3 We cannot use Natural laws to make a hypercomputer but we can
observe objects whose behaviour is hypercomputational.

The observation of real number values of physical measurements is a starting
point for the argument. We don’t say that hypercomputation but incomputabil-
ity is the cause of the discovery of Neptune. Citing Cooper and Odifreddi, Science
since the time of Newton, at least, has been largely based on the identification and
mathematical description of algorithmic contents in the Universe. We will look
at phenomena — primarily subatomic phenomena — which appear to defy such
description. The “hidden planet” Neptune was a hidden variable that preserves
computation.

This incomputability can be seen with the help of the n-clock machine.
We all know that pendulum clocks are quantum systems: each one has exactly

two different energy levels, two oscillatory modes: one with the pendulum at rest
and other with the pendulum oscillating in a stable orbit. We all know that clocks
on the same wall propagate across the wall sound waves, together with their
delays or advances, forcing the (coupled) clocks altogether, to a common delay
or advance. In Stonehenge, this effect cannot be seen between colored tokens,
but on the human machinery that puts the little tokens in motion. Some people
forget clocks when they think about the quantum realm. Quantum mechanics



in this way also applies to the macroscopic world (of course, not in the sense of
making Planck’s constant go to zero!14), in the sense of operators, eigenvectors
and eigenvalues.

It works like the ancients, who with the same teleological thinking, finding a
disagreement in the predicted Metonic cycle are compelled them to add a further
token to the game.

5 Algorithmic contents of laws

We disagree with a few statements in [11]:

In fact ... no discrete model — finite or otherwise — presents a likely
host for incomputable phenomena.

We have at least two exceptions: Wolpert in [65] studies a discrete neural
model with super-Turing capabilities, but with a transfinite number of neurons,
and Pollack in [46] proved that a model of higher-order neural nets is at least
universal. Other results on neural networks involve the real numbers. We have
an idea that infinite automata can have super-Turing powers, even not involving
the real numbers. Secondly, scientifically presenting the Universe with real num-
bers is not enough to embed in it super-Turing powers. We are always amazed
when we hear that a computational model equipped with real numbers allows
for hypercomputation. We will start by “defining” super-Turing power of the
scientifically presented Universe.

A physical process takes place in time. It is described or understood using
specific observable variables which constitute a notion of state. Therefore, the
process consists of states that are measurable, either numerically or qualitatively,
evolving in time. What makes such a process a computation? The role of initial
states and the structure of the observable histories they generate. The role of
data in setting initial states and interpreting behaviour as output.

Thesis 4 Up to Turing power, all computations in the Universe are describable
by suitable programs, which involve the prescription by finite means of rational
number parameters of the system or some computable real numbers; the com-
putations can be generated by a program. Beyond Turing power, we have com-
putations that are not describable by finite means; computations that cannot be
generated by any program.

Computation without a program! When we observe natural phenomena and
endow them with computational significance, it is not the algorithm we are
14 It is a good exercise to retrieve

F = m
d2r

dt2

from Schröndinger’s equation with F given by −grad U , where U is the classical
potential field in the original equation.



observing but the process. Some objects near us may be performing hypercom-
putation: we observe them, but we will never be able to simulate their behaviour
on a computer. What is then the profit to Science of such a theory of computa-
tion? The point is that the principle does not tell us about hyper-machines. In
this sense hypercomputation can exist. We presume that most of the reactions of
the scientific community against hypercomputation are mainly related with the
crazy idea of building a hyper-computer. We think it is also one of the sources of
criticism against the work of Siegelmann and Sontag in [55, 56]

But to help the reader to understand that the real numbers alone are not
enough to produce any kind of hypercomputation we call upon Analogue Com-
putation.

In the 1940s, two different views of the brain and the computer were equally
important. One was the analog technology and theory that had emerged before
the war. The other was the digital technology and theory that was to become the
main paradigm of computation (see [39]). The outcome of the contest between
these two competing views derived from technological and epistemological ar-
guments. While digital technology was improving dramatically, the technology
of analog machines had already reached a significant level of development. In
particular, digital technology offered a more effective way to control the preci-
sion of calculations. But the epistemological discussion was, at the time, equally
relevant. For the supporters of the analog computer, the digital model — which
can only process information transformed and coded in binary — wouldn’t be
suitable to represent certain kinds of continuous variation that help determine
brain functions. With analog machines, on the contrary, there would be few or
no steps between natural objects and the work and structure of computation (cf.
[39, 27]). The 1942–52 Macy Conferences in cybernetics helped to validate digital
theory and logic as legitimate ways to think about the brain and the machine
[39]. In particular, those conferences helped make the McCulloch-Pitts’ digital
model of the brain [36] a very influential paradigm. The descriptive strength
of McCulloch-Pitts model led von Neumann, among others, to seek identities
between the brain and specific kinds of electrical circuitry [27].

The roots of the theory of Analog Computation lie with Claude Shannon’s
so-called General Purpose Analog Computer (GPAC).15 This was defined as a
mathematical model of an analog device, the Differential Analyzer, the funda-
mental principles of which were described by Lord Kelvin in 1876 (see [10]). The
Differential Analyzer was developed at MIT under the supervision of Vannevar
Bush and was indeed built in 1931, and rebuilt with important improvements
in 1941. The Differential Analyzer input was the rotation of one or more drive
shafts and its output was the rotation of one or more output shafts. The main
units were gear boxes and mechanical friction wheel integrators, the latter in-
vented by the Italian scientist Tito Gonella in 1825 ([10]). From the early 1940’s,
the differential analyzers at Manchester, Philadelphia, Boston, Oslo and Gothen-
burg, among others, were used to solve problems in engineering, atomic theory,

15 In spite of being called “general”, which distinguish it from special purpose analog
computing devices, the GPAC is not a uniform model, in the sense of von Neumann.



astrophysics, and ballistics, until they were dismantled in the 1950s and 1960s
following the advent of electronic analog computers and digital computers ([10,
29]). Shannon (in [54]) showed that the GPAC generates the differentially alge-
braic functions, which are unique solutions of polynomial differential equations
with arbitrary real coefficients. This set of functions includes simple functions
like the exponential and trigonometric functions as well as sums, products, and
compositions of these, and solutions of differential equations formed from them.
Pour-El, in [48], and Graça and Costa, in [21], made this proof rigorous.

The fact is that, although the GPAC model is physically realizable and is
an analogue model of some part of the Universe, inputting and outputting real
numbers, it does not compute more that the Turing machine, in the sense of
Computable Analysis.

Cooper and Odifreddi say that The association of incomputability with sim-
ple chaotic situations is not new. For instance, Georg Kreisel sketched in [34]
a collision problem related to the 3-body problem as a possible source of incom-
putability.

We think that these ideas are indeed conceived in a few theoretical experi-
ences like in [15, 63], although they qualitatively require an unbounded amount
of energy 16, and for this reason, not for theoretical reasons, they are not im-
plementable. Returning to Kreisel, the pure mathematical model of Newtonian
gravitation is probably capable of encoding the halting problem of Turing ma-
chines. This hint is given by Frank Tipler, too, in [60], based on constructions
similar to Xia’s 5-body system (in [63]), were we have two parallel binary systems
and one further particle oscillating perpendicularly to both orbits. This particle
suffers an infinite number of mechanical events in finite time (e.g., moving back
and forth with increasing speed). Can we encode a universal Turing machine in
the initial conditions? This is an unsolved mathematical problem. Thus, it may
well be that the system of Newtonian mechanics together with the inverse square
law is capable of non-Turing computations. The hypercomputational power that
this system may have is not coded in any real number but in its own dynamics.
How do we classify such a Gedankenexperiment?

In the Billiard Ball Machine model, proposed by Fredkin and Toffoli in [18],
any computation is equivalent to the movement of the balls at a constant speed,
except when they are reflected by the rigid walls or they collide (preserving
global kinetic energy) with other balls, in which case they ricochet according
to the standard Newtonian mechanics. The Billiard Ball Machine is Univer-
sal. Moreover, the faster the balls move, the faster a given computation will be
completed. Newtonian physical systems that perform an infinite number of op-
erations in a finite time are well known. Specifically, we just have to consider 4
point particles moving in a straight line under the action of their mutual gravity.
Mather and McGee have shown in [35] that the masses and the initial data of
the particles can be adjusted to result in the particles having infinite velocity in
finite time. Gerver in [19] published a paper reporting on a model where, using

16 Although the total amount of energy involved does not change.



5 point particles in the plane moving around a triangle, all particles could be
sent to infinity in a finite time.

Can these systems encode hypercomputational sets? We aim at obtaining
either a positive or a negative answer to this question, i.e., (a) either we will
be able to prove that initial conditions do exist coding for a universal Turing
machine, (b) or we are not able to prove such a lower bound but, we will prove
that encoding of input and output exists, together with adjustable parameters
coding for finite control such that we will have an abstract computer inspired
by Newtonian gravitation theory. This result, together with a non-computable
character of the n-body problem as shown in [58] inter alia, will turn to be a
strong basis to discuss a possible Church-Turing thesis’ violation. In fact, the non-
computable character of the n-body problem is close to Pour-El and Richards’
results [49], and not so close to a mechanical computer rooted in the structure
of the inverse square law.

6 Routes to hypercomputation

Martin Davis published a paper called The Myth of Hypercomputation ([14])
which fights against work on hypercomputation in [56]; the criticism seems to
related with the dream of building a hyper-machine. In [56] two paths are started:
first, the physical construction of a hyper-machine (that culminates in Siegel-
mann’s controversial claims in Science [57] that, agreeing with Davis, can be
misinterpreted; and, second, the theoretical study of models of hypercomputa-
tion, were one searches for neural nets with weights of different types computing
diverse computational classes: integer nets are equivalent to finite automata, ra-
tional nets are equivalent to Turing machines, polynomial time real number nets
are equivalent to polynomial size Boolean circuits, and so on.

In the same way that differential equations in Rn are used to model Newto-
nian gravitation, nets with real number weights are worthy of investigation, since
for decades engineers have been using them to model learning. In the latter case,
philosophical thinking leans towards Davis’s considerations. We don’t believe in
a physical constant L with the value of the halting number17. Even if there was,
without some reason why it should have that value, we could not use it to make
a hypercomputation. Because, if such a constant existed, then we could apply
Thesis 4 and see objects around us performing hypercomputation having no tool
to reproduce it. That would be the case of having hypercomputation as Alchemy,
observe Cooper and Odifreddi in [11]:

To the average scientist, incomputability in Nature must appear as likely
as ‘action at a distance’ must have seemed before the appearance of New-
ton’s “Principia”. One might expect expertise in the theory of incom-
putability — paralleling that of Alchemy in the seventeenth century —
to predispose one to an acceptance of such radical new ideas.

17 Let . . . , (en, xn), . . . be an enumeration of programs and natural number inputs. The
n-th digit of L is 0 or 1 according to whether or not the program en halts on the
input xn.



Alchemy ended and Chemistry started when the scale was introduced in
Alchemy, a quite good interpretation due to Alexander Koyré. How do we mea-
sure hypercomputational behaviour? Suppose we do have a physical constant L
having the value of the halting number. Then, if we measure this constant up to,
let us say, n digits of precision, for sufficiently large n, and become aware that
the program of code em halts for input xm, how could we verify it? This would
work as a call for observational refutation, it would be, like for Leverrier and
Adams, a matter of faith, but in this case without Roemer’s telescope in Berlin.
Siegelmann’s paper in Science looks like Leverrier and Adams trying to convince
the scientific community that there is an alien out there. Why was the com-
munity not convinced? Well, in first place it seems that nothing in computing
escapes mathematical explanation, like Uranus escaped to his computed orbit.
But this is not obvious, since sometimes the scientific community do not react
as Airy did. Do you remember about the scandalous trial in London in 1877?
(We learned this from Michio Kaku’s Hyperspace in [33].)

A psychic from the USA visited London and bent metal objects at a distance.
He was arrested for fraud. Normally, this trial might have gone unnoticed. But
eminent physicists came to his defense, claiming that his psychic feats actu-
ally proved that he could summon spirits living in the fourth dimension. Many
of defenders were Nobel laureates to be. Johann Zollner, from the University
of Leipzig came in his defence; so did William Crookes, J J Thompson and
Lord Rayleigh. Why this difference of attitude: Airy’s reaction to the letters of
Leverrier and Adams, with mathematical calculations; Thompson and Crookes
reaction to the possibility of psychokinesis working with Zollner?

Newton’s Sensorium Dei was a metaphysical tool to understand a system of
the world that without the intervention of God would collapse in his center of
gravity. Leverrier and Adams made people believe again in Newtonian’s system of
Physics. Departures of computed lunar orbit against observations were explained
by Euler. The world is ready for a Laplacian demon to remove God from physical
space since Mr. de Laplace ne besoin pas de cette hypothese to understand the
merry-go-round of the heavenly bodies in the sky. However, what Laplace didn’t
know is that, most probably, although this system is deterministic, it encodes its
own unpredictability and its own incomputability. Probably, not even Laplace’s
demon has such a computer. In a letter, Cooper observed:

... it seems to me that recursion theorists have not until recently really
understood or cared what their subject is about, and most still resist even
thinking about it (and maybe the same can be said about complexity theo-
rists...). Actually, Gandy was interesting to talk to — as is Martin Davis,
of course. We think it is hard for people of my generation and before to
adjust to the new fluidity of thinking (or maybe we should say the old
fluidity of thinking of the inter-war years).

The study of hypercomputation should be pursued with mathematics, as with
any mathematical concept.



7 Final remarks

Science is a loose federation of different intellectual, experimental and mate-
rial communities and cultures; the cultures are strong and are not confined to
disciplines. We have reflected upon the task of combining our theoretical under-
standing of computation with that of the physical world. As working scientists,
our view is limited to the problems of relating computability and complexity
theory with mechanics (Newtonian, relativistic, ... ). To us there are intriguing
questions, observations, theorems and promising approaches.

However, the extraordinary development of the theory of computation since
the 1930s has been based on its mathematical abstractions from the physical world
of machines and technologies. These logical and algebraic abstractions have en-
abled the rise of digital computation, and have granted Computer Science its
intellectual independence from electronics and physics. The mathematical ma-
turity of our abstract theories of computation allow us to look at the physical
foundations of computing in new ways. But it also makes our quest more contro-
versial. Beautiful mature abstractions must be traded for clumsy new ill fitting
physical notions.

All sorts of questions arise, from a fundamental curiosity about information
processing in physical systems, and from a need to understand interfaces be-
tween algorithms and physical technologies (e.g., in new problems of quantum
information processing, and in old problems of analogue computers). What is
the physical basis of computation? Is there a theory of the physical process of
making a computation?

But the task of unifying computability and mechanics involves wider issues.
One discipline shapes the development of another. To take a example nearby,
mathematical logic has had a profound influence of the development of pro-
gramming languages. Priestley [47] has examined this process historically and
to some extent methodologically using ideas of Pickering [45]. He has shown
that there are exciting and rich philosophical phenomena to think about, involv-
ing concepts, theorems, practical problems, epistemics and sociology. Combining
computability theory and mechanics is a tougher challenge. But it may some es-
sential methodological structures, such as those of “bridging, transcription and
filling” suggested by Pickering [45]. Likely it will have new ones, too.

Since the early seventies, we have seen the decline of the enthusiastic debate
over what intellectual contribution has computability theory to offer science.
The messy debate is back and there new people with a new agenda.
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