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Presentation of sessions and literary references 

 

Session 1 (30.04.2012): “A first «revolution» in mathematics: the transition from a 

single, plan space, to a plurality of curved, multidimensional spaces (Riemann, Klein, 

Poincaré)” 

 

In this first session, we will question the status of geometry as it evolved from the 

second half of the 19
th

 century to the early 20
th

, that is, between the works by 

Riemann, Clifford, Beltrami, Helmholtz, Klein, Lie and Poincaré, and those by 

Hilbert, Cartan and Weyl. During this period, geometry knows the undoubtedly more 

fundamental transformation of its history, both in what concerns its methods and its 

concepts. The relationship of geometry with other branches of mathematics, 

especially algebra and analysis, will be deeply changed, as well as its relationship 

with physics and with other natural sciences. Therefore we no longer speak of 

geometry nor of space, but of geometries and of spaces. The recognition of a plurality 

of geometries in the mathematical plan constituted a capital historical fact. For the 

first time, with the discovery of non-Euclidean geometries, the conception of a single 

geometry and of an absolute space is completely questioned, in favor of another, 

radically different: as science of «pure» forms, geometry belongs to mathematics at 

the same level as arithmetic and algebra; while as science of real forms, it is 

intimately linked to physics. Riemann was undoubtedly the first to mathematically 

expose the double nature of space. In his notable 1954 dissertation, “On the 

hypothesis which underlie geometry” (“Über die Hypothesen welche der Geometrie zu 

Grunde liegen”), the author introduces completely new mathematical ideas, whose 

philosophical value and the meaning to physics appear revolutionary for the time. 

Following Gauss, but generalizing considerably his intuitions, Riemann shows that 

the Euclidean space, from a purely mathematical point of view, was no more than a 

particular case among other possible spaces, and that there was no reason to think that 

the physical space corresponded to the one described by the axioms of Euclidean 
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geometry. Consequently, there could exist not only several geometries, but also 

several geometrical spaces (kinds of manifolds) and several different physical spaces. 

It was certainly a turning point which deeply changed the landscape of mathematics, 

but mathematics as well. In the presentation, we will analyze the steps that drove to 

this new conception and to the mathematical ideas which are its ground. Particularly, 

we will analyze the way in which the concept of manifold (Mannigfaltigkeit) in 

Riemann was formed and the way in which the modern differential geometry was 

constituted. The geometrical concept of manifold maintains an essential link with the 

functional concept of «Riemann surface», both of which can be explained thanks to a 

qualitative or spatial conception of mathematics. We will also provide an 

epistemological interpretation of the concept of manifold (n-dimentional curved 

space) and of its meaning. Finally, we will show that Riemann’s manifold concept 

and Clifford’s spatial theory of matter are at the basis of a fruitful movement of 

geometrization of physics, which culminated in Einstein’s general theory of relativity.        
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Session 2 (02.05.2012): “A second «revolution» in mathematics: the new interaction 

between geometry and physics, from a pre-determined space to a dynamic space-time 

(Clifford, Minkowski, Einstein, Weyl)” 

 

The existence of several geometries which are also carried out from the point of view 

of physics (other than the mathematical), was shown in a decisive way thanks to 

Einstein’s general theory of relativity, even though especially Riemann and Clifford 

had already admitted that a geometry other than the Euclidean could be applied to our 

physical space. But to come to such admission, it was first necessary to deeply 

criticize our conception of space, which could no longer be thought nor as the place 

where figures can be constructed, nor as the one where bodies move. In his 

fundamental work about the hypothesis of geometry, Riemann showed that the 

property of continuity is linked to the metrical structure of space, which means that 

each point, as well as its infinitesimal variations, is representable by a continuous 

function of its differentials. Moreover, he demands such functions to be continually 

differentiable, which defined the differentiable level of the continuum, after he had 

recognized the existence of a first topological level of continuity, which could be 

designated by that of dimensionality – which can equally be expressed by saying that 

the world we inhabit is a spatial continuum of three dimensions (or a tridimensional 

manifold). But Riemann sets forth the possibility that there is a third level of the 

continuum, whose nature isn’t at all assimilable to the others we have just mentioned, 

and whose constitutive principles do not take part in the way we abstractly represent 

them, as is the case to the discrete (the discrete manifolds, like the arithmetic or 

algebraic manifolds, are composed by numerable elements, while the continuous 

manifolds composed by points are measurable through functions of distance). 

According to Riemann, continuous manifolds (like the differentiable manifolds) could 

have an origin of dynamic nature, that is, the property of continuity would be linked 

to the physical content of space. In other words, the physical phenomena and the kind 

of space in which they take place are indissociable: the space imagined by Riemann is 

non-empty (differently from the one thought by Newton) and endowed with physical 

effects which would propagate locally. Following Riemann, Clifford explicitly 

theorized a coherent program for a geometric interpretation of the physical 

phenomena. Clifford takes over Riemann’s intuition and states the hypothesis that 

physical space (both at macroscopic as microscopic scale) isn’t neither homogeneous 
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nor isotrope, that is curved and not flat (as in Euclidean geometry) and susceptible of 

variation under the presence of certain physical effects, and that, furthermore, the 

behavior of matter depends on how the curvature of space varies. We will show that 

the spatial theory of curvature and of matter developed by Clifford will play an 

important role in the development of general relativity until a recent period, 

particularly in the elaboration of J. A. Wheeler’s geometrodynamic theory. Riemann’s 

influence (and Clifford’s indirectly) upon the new physics, and particularly on 

Einstein’s, has been tremendous. Actually, the latter’s general relativity is grounded 

on the concept of Riemann’s differentiable manifold, which was endowed with a non-

Euclidean metric (hyperbolic, elliptic or other), and with complicated geometrical 

objects which we call curvature tensors. These are geometrical objects which also 

have a physical meaning, provided that they correspond to the gravitation potential of 

general relativity. That means, in other terms, that the properties of the phenomena 

which occur at the scale of our Universe lie in the geometrical and topological 

structure of a pseudo-riemannian manifold, Einstein’s space-time constituting its 

physical model par excellence.        
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Session 3 (04.05.2012): “A third «revolution» in mathematics: geometry and the 

generation of natural and perceptive forms (D’Arcy Thompson, Thom, neo-gestalt)” 

 

Catastrophe theory elaborated by René Thom in the 1960’s is a domain of differential 

topology and it is part of the mathematical theory of singularities of differentiable 

applications, founded by the mathematician H. Whitney and developed after by John 

Mather. The theory of singularities is a generalization of the functions’ minima and 

maxima. Whitney replaces the functions by mappings, that is, collections of multiple 

functions with several variables. The bifurcations of the dynamic systems of A. 

Andronov, already introduced by Henri Poincaré at the beginning of the last century 

in the framework of his celestial mechanics and of systems of chaotic type, constitute 

one of the essential mathematical ingredients of catastrophe theory. Bifurcations are 

geometrical objects characterized by an unstable behavior; places where a function 

ceases to be linear and acquires further determinations. In a broader sense, the word 

bifurcation designates every kind of qualitative reorganization or metamorphosis of 

different entities resulting from a change of parameters of which they depend. 

Catastrophe theory aims to describe the discontinuous phenomena with the support of 

continuous mathematical models. In other words, the theory has as its goal to build 

continuous dynamic models as simple as possible which can generate morphologies, 

empirically given, or sets of discontinuous phenomena. We will show that the notion 

of singularity is one of the most fundamental in mathematics; it is at the heart of the 

theory of functions with several complex variables, of Riemann’s surface theory, of 

algebraic geometry, of differential topology, and certainly, of the qualitative theory of 

dynamic systems. The singularities of the function are in a sense traces of the 

topology that we «killed»: we kill the manifold’s topology by applying it the real axis, 

but the topology resists, it «screams», and its cries are manifested by the existence of 

critical points. Hence the notion of singular point, which plays a most fundamental 

role in catastrophe theory. Generalized catastrophe theory’s basic postulate is that the 

form under which every object appears to the observer is nothing more than the set of 

catastrophes associated to a certain dynamic. Thus the boundary which separates it 

from the external medium, in regions where it doesn’t display accidents, will be 

frequently associated to a fold-type catastrophe. But it can dig a trench, exfoliate in a 

bubble, issue a lash, in which cases one as to appeal to the cusp, to the swallowtail, to 

the elliptic umbilic. Several complex situations might be found, only describable by the 
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generalized catastrophe theory: bubbles, lumps, laminars, filaments. They are part of 

our everyday landscape, to the point that we no longer pay them attention: it’s the 

foam of a glass of beer, the condensation of a cloud in rain, the cracks in an old wall, 

the drawings left by the wave in the sand. There is a sort of ideal geometric reality in 

the dynamic systems studied by Thom, and that’s probably the reason (or one of the 

reasons) why the form of a wave crashing in the seashore evokes, irresistibly, the 

hyperbolic umbilic. But these dynamic systems (natural phenomena, living processes) 

also have, simultaneously, a content of sense, meaning which, through the mediation 

of certain physical qualitative resonances (prégnances) (light, sound, heat, etc.) that 

invest the observer’s field by reshaping his centers of awareness and by causing 

variations in his points of attention regarding objects and events. We will show that 

catastrophe theory is, first of all, a theory of action, a dynamic theory of possible 

developments of forms. In other words, catastrophe theory is interested in the 

formulation of a dynamic theory of generation, of becoming, and of stabilization of 

natural and living forms.          
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