

- 2.20m (w) x 1.50m (d) x 1.80m (h)
- Mass budget 288 kg
- Material and technologies :
 - Central CFRP cylinder with support for propellant tanks
 - Outer panels and shear walls: sandwich with metallic skins
 - Some embedded heat pipes
 - Contaminant free (bake-out req'd)
 - Minimised thermo-elastic distortion

Interfaces with :

- about 100 equipment units
- 9 flexible appendages
- 1194mm launch interface ring

Thermal Implementation

- Design, procurement and breadboard testing of Payload radiator assemblies:
 - Includes radiating panels, flexible blades, heat straps, heat pipes, reflecting fins to limit heat from external loads (eg solar array)
 - Thermal and mechanical isolation to ensure spacecraft thermoelastic performance
- Design and procurement of Platform MLI
 - High IR exposure from High Gain Antenna
 - Coverage of platform panels and equipme
 - Electrically conductive (surface charge control)
- Procurement of heaters, thermistors and low conductivity washers

Heatshield

- Protects the spacecraft from the Sun
 - Slightly oversized beyond spacecraft body to ensure spacecraft in shadow
 - Limits the radiated heat flux to the spacecraft to +/-30W
- Induce minimal thermo-elastic distortion into the spacecraft structure
- Control the surface charge
- Responsibility of TAS-I

- 8 feedthroughs for PL instruments, 7 with doors
- Edge and corner feedthroughs for Sun Sensors and SoloHI
- Minimise straylight, high cleanliness, surface charge contro
- Materials/manufacturability development necessary

- 2 segments, 2 hinges with switches
- Interface to 5 sensors (incl harnesses)
- Pointing accuracy better than 0.15°
- Low shock HDRM to S/C
- Contaminant free (bake-out required)
- Magnetically "clean"
- Always in the shadow of the Heatshield below 0.8 AU

Propulsion Subsystem

 AV for gravity assist and torques for attitude control and wheel speed control

Bi-propellant (MON3/MMH) system with one-shot re-pressurisation (He)

Two propellant tanks (2 x 124 litre)

18 dual valve thrusters (10 N)

Attitude and Orbit Control

- Main design drivers
 - Precise pointing (RPE 1 arcsec in 10 s)
 - Sun pointing constraints
 - Complex thruster configuration
 - Highly autonomous
 - Complex FDIR

Sensors and actuators

- Star Tracker (x 2)
- Inertial Measurement Unit (x 2)
- Fine Sun Sensor (x 2)
- Reaction Wheels (set of 4)
- Thrusters (part of Propulsion subsystem)

AOCS subsystem tasks include

- AOCS hardware procurement
- Completion of algorithm design
- Detailed design and coding of AOCS SW
- Development of simulation framework
- Verification and validation of AOCS
- Support to prime for integration, test and maintenance of flight SW

Central Software (CSW)

- The spacecraft on-board software includes the CSW residing in the OBC
- It is anticipated that the data handling service layer is reused from other programmes
- Application layer to be coded against Requirement Specs
- Verified software integrated by Prime in the overall CSW

Electrical Power

- Fully regulated and protected power bus
- S/C power requirement is 28V, 1500W (in Sun)
- PCDU input voltage range 32V to 136V
- Battery 2000Whr (25V) Li-ion for LEOP and Gravity Assist
- Includes Solar Array Drive Mechanisms (SADM) and Solar Array Drive Electronics (SADE)

MIL-1553 control and TM/TC interfaces (PCDU and SADE)

PCDU

SADA (SADE/SADM)

Solar Array

- Re-uses BepiColombo MPO technology
- 2 wings, 3 single-sided panels

- Each panel 1.2m x 1.91m
- Array provides ~945W at 1.5AU
- Survives harsh environment with peak solar flux of 17.5 kW/m²

y of Astrium, it shall not be communicated to third parties without prior written agreement, its content shall not be di

Esta Orbites

Harness

- Conventional design and manufacture (approx 80kg)
 - Power harness (energy sources double insulated)
 - Signal harness
 - Pyro and deployment device harness
 - SpaceWire and Mil-1553 harness
 - Safe/Arm plugs
 - Excludes intra-Instrument harness
 - Low magnetic footprint and high cleanliness
- Subsystem tasks include:
 - Design, build and test from design rules, equipment Interface Control Documents and Spacecraft configuration.
 - Integrate and test on the Spacecraft.

Data Handling

- OBC is main computer for command, monitoring, AOCS and FDIR. Based on ERC-32 processor. Includes reconfiguration, TC/TM processing, ...etc.
- SSMM provides housekeeping and science data storage. Approx 512 Gbits EoL. Acts as SpW router between OBC & Instruments
- RIU includes interfaces to heaters, thermistors and bespoke control interfaces to thrusters, pressure transducer, Sun Sensor, Reaction Wheels (tbc), etc

Antennas

- Two-way X-Band communication
- Low Gain Antennas (LGA1 and LGA2)
 - Low data rate during LEOP, near Earth, and as backup
 - Near 4π steradian coverage
- High Gain Antenna (HGA) for high data-rate during nominal and extended mission phases
 - 1.1m dish, dual axis pointing mechanisms, gain 34dBi to 36dBi
- Medium Gain Antenna (MGA) for medium data rate up-down communications in backup situations and during Safe Mode operation
 - 0.19m horn, single axis pointing, gain 20dBi to 22dBi
- Antenna Pointing Mechanism Electronics (APME)

Communications

- Single X-band downlink and uplink
- 150kbps main data downlink rate
- Turn-around and differential one-way ranging
- Two Deep Space Transponders (DST) based on BepiColombo design
- Two 70W X-band TWTA
- RF distribution assembly containing the passive hardware
- To be integrated and tested on Communications Panel

he property of Astrium. It shall not be communicated to third parties without prior written agreement. Its content shall

Mechanical Ground Support Equipment

- Astrium will carry out spacecraft AIT activities in Stevenage.
 - Some GSE will be re-used from other programmes and the remainder will be procured specifically for Solar Orbiter
- The mechanical ground support equipment (MGSE) needed to support spacecraft AIT includes:
 - Spacecraft Container
 - Multi-Purpose Trolley
 - Vertical Trolley
 - Spacecraft Lifting Device
 - MGSE Lifting Brackets
 - Panel Handling Frame/Trolley/Lifting Device/Transport Container
 - Clampbands
 - Adaptors
 - Unit Mass Dummies

TM/TC SCOE

TM S recording.

Subsystem EGSE is nominally the responsibility of the Subsystem supplier

 Astrium is responsible for system level EGSE but EGSE will be designed and manufactured by external Companies

 2 EGSE sets are required to support system level tests

UK EXPORT CONTROL RATING: 9E001/9A004 Rated By: P. D'Arrigo

Solar Orbiter AOCS

- Solatorhiter Solatorhiter
- The AOCS provides all the functionalities required to control the spacecraft attitude and rates, and perform orbit correction manoeuvres
- Drivers include:
 - Pointing performance requirements (RPE 1 arcsec in 10 s)
 - Sun pointing constraints (max off-pointing of 6.5° in 20 s)
- Pure-torque thruster control
 - Force-free to avoid orbit disturbance
- Multiple delta-V thrust directions (+X, -X, -Y)
 - Complex thruster configuration
- Highly autonomous subsystem which requires minimal ground support
 - E.g. long-duration conjunctions
- Complex FDIR
 - Earth strobing in Safe and Survival Modes.
 - Autonomous transition from thrusters to wheel-based Safe Mode (if wheels available after autonomous check).
 - Autonomous transition to inertial pointing if star tracker available.

Solat orbiter

- The subsystem consists of a dedicated set of sensors:
 - Star Tracker
 - Inertial Measurement Unit
 - Fine Sun Sensor
- And a dedicated set of actuators:
 - Reaction Wheels
 - Thrusters

Star Tracker: tolerant to SEU, flares, etc.

IMU: gyro and accelerometer, high accuracy, low drift

FSS: tolerant to close sun proximity

HW architecture - 2

Star trackers face away from sun

4 reaction wheels

Sun sensors on front face

Pure torque thruster configuration

Mode architecture - 1

	AOCS	Sensors				Actuators		Notes
	Mode	FSS	IMU	STR	ACC	RWU	RCS	•
	SBM						✓	RCS for priming – no control.
Stand-By Mode (SBM)	SASM	✓	✓			√ *	✓	Control suspended during SA deployment. RWU in open-loop (speed control)
	WSM	✓	✓	√*		✓	√ *	RCS used for wheel offloading in open-loop. STR used for attitude reconstruction.
Separation	NCM		✓	✓		✓	✓*	RCS used for wheel offloading in open-loop.
Auto	OCM		✓	✓	✓	√*	✓	RWU in open-loop (speed control)

System Modes		AOCS Modes					
	SBM	SASM	WSM	NCM	OCM		
Off							
Pre-Launch and Launch	✓						
Acquisition		✓					
Nominal				✓	✓		
Safe				✓			
Survival		✓	✓				

Mode architecture - 2

	AOCS Mode	Description
be disclosed.	Sun Acquisition and Survival Mode (SASM)	 Initial sun acquisition and lowest level system survival mode following FDIR fail-safe alarms. Nominal sun acquisition with FSS and IMU, thrusters for actuation. Control is suspended during solar array deployment and rotation. Rotation about the sunline (Earth strobing) controlled by on-board flags and TC.
agreement, its content shall not	Wheel Survival Mode (WSM)	 Sun pointing on wheels in preparation for transition to NCM and second level of system survival mode. Sun pointing based on 2-axis control about sunline with FSS and rate control on third axis. Rotation about the sunline (Earth strobing) controlled by on-board flags and TC. Autonomous wheel momentum management is performed using thrusters.
5	Normal Control Mode (NCM)	 Main mode to support the mission science operations. Provides high accuracy pointing. This mode is also employed in the system Safe Mode when IMU, STR and RWU are deemed usable. Guidance is semi-autonomous based on ground up-linked attitude guidance profiles. Autonomous or commandable wheel momentum management is performed using thrusters.
shall not be communicated to the	Orbit Control Mode (OCM)	 Used to perform trajectory correction manoeuvres (TCM) of any type. Employs same sensors as NCM, thrusters provide three axis control torque. Reaction wheels are kept at constant speed. The ΔV amplitude can be controlled by either the pulse count method or using accelerometers.

Functional architecture

- Sensor processing: processing of raw sensor data to global datapool (acquisition the DHS).
- Sensor Data Fusion: attitude and rate fusion.
- Guidance: generation of attitude and rate demands, based on direct measurements or ground defined attitude profiles.
- Error calculation: rate and angle error calculation, based on the difference between the attitude/rate demands and the attitude/rate estimates/measurements.
- Control Law: 3 single axis PID controllers with saturation limiters, plus flexure filters.
- Actuator Commanding: On modulated PWM (Pulse Width Modulator) thruster commanding or wheel torque generation.
- Mode State Handling: controls state transitions and switching logics.

Region	Depointing	Exposure	Notes					
Nominal	Θ ≤ 1°	Continuous	This region covers all operational attitudes up to Sun					
			limb pointing.					
Safe	1° < ⊖ ≤ 2.3°	Continuous	This region covers off-pointing up to the FDIR attitude monitor threshold and steady state attitude in Survival.					
Failure	2.3° < ⊖ ≤	Transient	This region covers transient					
transient	6.5°	< TBD sec	off-pointing during attitude recovery in Survival.					
Forbidden	Θ > 6.5°	Never	This region cannot be protected by the heat shield.					

Software architecture

Data Interface

- Global datapool (GDP): central memory area where parameters, flags, raw and processed data, are stored and accessible to all the application layer functions and the DHS.
- Safe Guard Memory (SGM-RAM): memory area which retains its content when rebooting or reconfiguring the OBC between prime and redundant process modules (PM). Guidance: generation of attitude and rate demands, Sun pointing with/without rates on X axis.
- Ground TC: the AOCS can be controlled by ground TC whose application ID (APID) is the one assigned to the AOCS.

property of Astrium. It shall not be communicated to third parties without prior written agreement. Its content shall not be dis

AOCS Subsystem Activities

- AOCS Detailed Design includes:
 - Completion of the detailed design, development and definition of the AOCS algorithms
 - Development of a simulation framework to tune, test, verify and validate the AOCS
 - Verification and validation of the AOCS
- AOCS Software Implementation includes:
 - Generation of the Specifications for the AOCS flight software
 - Production of the software detailed design
 - AOCS SW components
 - Development, unit test and integrated test of the AOCS flight code
 - Verification and validation of the AOCS SW
 - Support to Prime for integration, testing and maintenance
 - Contributions to the preparation of AOCS aspects of SW budgets
 - Close collaboration with Prime throughout to ensure overall system consistency
- AOCS Unit Procurement

